Novel Computational Techniques to Expand the Scope of Protein Nuclear Magnetic Resonance Spectroscopy
扩大蛋白质核磁共振波谱范围的新型计算技术
基本信息
- 批准号:9293124
- 负责人:
- 金额:$ 3.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:BindingBiologicalBiological ProcessBiologyBypassCancer BiologyChemicalsClinicalComplexComputational TechniqueDataDimensionsDisciplineDiseaseDrug CompoundingDrug DesignDrug TargetingEntropyEnzymesEtiologyFrequenciesGoalsInvestigationIsotope LabelingLocationMalariaMathematicsMethodsMolecularMolecular StructureMolecular WeightNMR SpectroscopyNanotechnologyNoiseNuclear ProteinNucleic Acid BindingOutcomeParasitesPatternPlasmodium falciparumPreparationProcessProteinsResearchResolutionSamplingScienceSignal TransductionSpectrum AnalysisStructureTechniquesTechnologyTestingbiomineralizationcomputerized data processingdesigndrug developmentexperimental studyimprovedinnovationmacromoleculemolecular dynamicsnovelphosphoethanolamine methyltransferaseprotein structurereconstructionsignal processingstructural biologythree dimensional structuretool
项目摘要
Project Summary: Understanding the structure and function of biological macromolecules is critical in
countless biomedical disciplines, including cancer biology, drug design, and nanotechnology. It is often
essential to understand molecular etiology to interpret a clinical presentation as well. Nuclear Magnetic
Resonance Spectroscopy (NMR) is one of the principal techniques for investigation of protein structure and it
is the primary technique for understanding the biology of proteins that lack fixed three-dimensional structures –
termed intrinsically disordered proteins (IDPs) – a group that includes numerous proteins involved in
biomineralization, cell signaling, and nucleic acid binding. However, NMR spectroscopy suffers from limitations
that restrict the size and scope of proteins and IDPs that it can be used to investigate. The broad goal of this
proposal is to develop and characterize improved techniques for analyzing NMR data to expand the set of
feasible protein targets. One central limitation of NMR is the inherent resolution/sensitivity tradeoff in which
resolution (the ability to discriminate signals with similar frequency) can be enhanced only by sacrificing
sensitivity (the ability to distinguish signal from noise), or vice versa. Generally, an NMR spectroscopist may
try to overcome these limitations through preparation of isotopically labeled samples or by using powerful
spectrometers and sophisticated multidimensional experiments. Various mathematical manipulations can be
applied to the raw data for further enhancement of sensitivity or resolution. Although useful, these techniques
ultimately force a tradeoff between sensitivity and resolution in one way or another. Maximizing both resolution
and sensitivity is critical in the biological applications of NMR, and therefore investigation of techniques with
the potential to simultaneously enhance both is necessary. I have generated preliminary data, which strongly
suggests that an innovative data processing technique called Maximum Entropy Reconstruction with linewidth
deconvolution (deconvolution) may bypass the tradeoff by simultaneously enhancing resolution and sensitivity
in multidimensional NMR spectra. Deconvolution functions by reducing signal overlap and scaling down
spectral noise. This proposal details the first systematic comparison between conventional data processing
techniques and deconvolution. I will conduct this comparison using a tripartite research strategy by first testing
deconvolution in a precisely designed control scenario, in which the ideal outcome is known. Then I will
quantify the abilities of deconvolution in unknown situations and finally I will use deconvolution to determine a
protein structure and demonstrate its practical benefits. The quantitative results of these studies will definitively
determine if deconvolution provides simultaneous enhancement of resolution and sensitivity. It would
constitute a breakthrough for NMR spectroscopy and structural biology if deconvolution provides the benefits
suggested by my data. Deconvolution is a cutting-edge technique that is inexpensive to implement and has the
potential to provide the necessary spectral improvements for studying previously intractable proteins and IDPs.
项目摘要:了解生物大分子的结构和功能对于生物大分子的研究至关重要
无数的生物医学学科,包括癌症生物学、药物设计和纳米技术。常常是
对于理解分子病因学以解释临床表现也至关重要。核磁
共振光谱 (NMR) 是研究蛋白质结构的主要技术之一,它
是了解缺乏固定三维结构的蛋白质生物学的主要技术 -
称为本质无序蛋白 (IDP) – 一组包含许多参与
生物矿化、细胞信号传导和核酸结合。然而,核磁共振波谱法也存在局限性
限制了可用于研究的蛋白质和 IDP 的大小和范围。此次活动的总体目标是
该提案的目的是开发和表征用于分析 NMR 数据的改进技术,以扩展
可行的蛋白质目标。 NMR 的一个主要限制是固有的分辨率/灵敏度权衡,其中
分辨率(区分具有相似频率的信号的能力)只能通过牺牲来增强
灵敏度(区分信号和噪声的能力),反之亦然。一般来说,核磁共振波谱学家可以
尝试通过制备同位素标记样品或使用强大的技术来克服这些限制
光谱仪和复杂的多维实验。可以进行各种数学运算
应用于原始数据以进一步提高灵敏度或分辨率。这些技术虽然有用,但
最终以某种方式迫使灵敏度和分辨率之间进行权衡。最大化分辨率
灵敏度在 NMR 的生物应用中至关重要,因此对技术进行研究
同时增强两者的潜力是必要的。我已经生成了初步数据,这些数据强烈
建议采用一种称为线宽最大熵重建的创新数据处理技术
反卷积(devolving)可能会通过同时增强分辨率和灵敏度来绕过权衡
在多维核磁共振谱中。通过减少信号重叠和缩小比例来实现反卷积功能
频谱噪声。该提案详细介绍了传统数据处理之间的首次系统比较
技术和反卷积。我将通过首先测试使用三方研究策略进行比较
在精确设计的控制场景中进行反卷积,其中理想结果是已知的。那我就
量化未知情况下反卷积的能力,最后我将使用反卷积来确定
蛋白质结构并展示其实际益处。这些研究的定量结果将明确
确定反卷积是否可以同时增强分辨率和灵敏度。它会
如果反卷积提供了好处,那么将构成核磁共振波谱学和结构生物学的突破
根据我的数据建议。反卷积是一种尖端技术,实施成本低廉,并且具有
为研究以前难以处理的蛋白质和 IDP 提供必要的光谱改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Zambrello其他文献
Matthew Zambrello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Zambrello', 18)}}的其他基金
Novel Computational Techniques to Expand the Scope of Protein Nuclear Magnetic Resonance Spectroscopy
扩大蛋白质核磁共振波谱范围的新型计算技术
- 批准号:
9191694 - 财政年份:2016
- 资助金额:
$ 3.92万 - 项目类别:
相似海外基金
Nitrous Oxide Management in a Novel Biological Process
新型生物过程中的一氧化二氮管理
- 批准号:
2789227 - 财政年份:2023
- 资助金额:
$ 3.92万 - 项目类别:
Studentship
Dynamic regulation of RNA modification and biological process
RNA修饰和生物过程的动态调控
- 批准号:
18H05272 - 财政年份:2018
- 资助金额:
$ 3.92万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2017
- 资助金额:
$ 3.92万 - 项目类别:
Discovery Grants Program - Individual
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2016
- 资助金额:
$ 3.92万 - 项目类别:
Discovery Grants Program - Individual
Organizing the Waterloo Biofilter biological process for treating wastewater concentrated by extreme water conservation plumbing
组织滑铁卢生物过滤器生物工艺处理通过极端节水管道浓缩的废水
- 批准号:
479764-2015 - 财政年份:2015
- 资助金额:
$ 3.92万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2015
- 资助金额:
$ 3.92万 - 项目类别:
Discovery Grants Program - Individual
Development of Biological Process for VOC treatment
VOC处理生物工艺的开发
- 批准号:
476672-2014 - 财政年份:2015
- 资助金额:
$ 3.92万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2014
- 资助金额:
$ 3.92万 - 项目类别:
Discovery Grants Program - Individual
Optimization of a biological process treating winery wastewater: anaerobic digestion integrated with Waterloo biofilter
处理酿酒厂废水的生物工艺优化:厌氧消化与滑铁卢生物过滤器集成
- 批准号:
463193-2014 - 财政年份:2014
- 资助金额:
$ 3.92万 - 项目类别:
Engage Grants Program
Micro-Scale Biological Process Automation: Modelling, Sensing and Control
微尺度生物过程自动化:建模、传感和控制
- 批准号:
42116-2013 - 财政年份:2013
- 资助金额:
$ 3.92万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




