MHealth Monitoring of Acoustic and Behavioral Patterns in Bipolar Disorder Across Cultures
MHealth 监测跨文化双相情感障碍的声学和行为模式
基本信息
- 批准号:9340389
- 负责人:
- 金额:$ 17.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-20 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAdherenceAffectAffectiveAmericanArabsBehavioralBipolar DisorderBipolar ICaringCategoriesCaucasiansCellular PhoneCharacteristicsClinicalClinical assessmentsCommunitiesCommunity HealthComputer AnalysisComputer SimulationComputing MethodologiesCountryDataData AnalysesDatabasesDepressed moodDevelopmentDevicesDiagnosisDimensionsDisciplineDiseaseEarly DiagnosisElementsEmotionsEvaluationFoundationsFutureGaussian modelGeographic LocationsGoalsHealthHealth TechnologyHealthcareImmigrantImmigrationImpairmentIndividualInterventionIntervention StudiesInterviewLanguageLebanonLocalesMachine LearningManicMeasuresMedicalMental DepressionMetadataMethodsMichiganMiddle EastModelingMonitorMood DisordersMoodsMultilingualismOutcomeParticipantPathologicPatient CarePatient TriagePatientsPatternPhonationPopulationProbabilityProcessProtocols documentationProxyPsychiatric therapeutic procedureRecording of previous eventsResearch InfrastructureResourcesSafetySecureSeveritiesSignal TransductionSocial FunctioningSpeechSupervisionSymptomsTechnologyTelephoneTemperamentTestingTimeUniversitiesVariantbasebipolar patientscognitive functioncohortdata managementdesigndigitalflexibilityglobal healthhandheld mobile devicehealth datahuman diseaselearning strategylexicallexical processinglow and middle-income countriesmHealthmarkov modelmobile computingpredictive modelingprogramstooltrait
项目摘要
Abstract:
The ability to prioritize individuals for health care based on behavioral and acoustic patterns in speech will allow for efficient use of health care resources. The ability to predict mood states using daily monitoring of acoustics derived from mobile technology provides the basis for a real-time proxy measure of moods and affective states. Identification and monitoring of these and other dimensional features of human disease is the base for anticipating outcomes, offering the future possibility of timely and mitigating interventions. Technological and mHealth methods are well suited for the global health community due to the flexibility and adaptability of the approach; the capacity to reach large numbers of patients can be easily amplified with modest increase in infrastructure. We have developed an accurate prediction model for mood states in bipolar (BP) individuals using machine-learning strategies and established a process that involves preprocessing, feature extraction, and an integrated data analysis of clinical and acoustic data gathered from personal use of a mobile device for up to one year. The results show mood states are predicted with an AUC statistic of 0.74 (mania) and 0.77 (depression). We hypothesize that analyses across cultures will identify common features of illness that can be identified using our methods. BP is ideal for study because of the wide range of mood states and temperamental traits. This study aims to 1) ascertain 30 individuals with BP and 10 healthy controls from Lebanon and a multilingual community in SE Michigan, recording daily acoustic and behavioral data using a smart-phone, all outgoing speech from the device is gathered and all personal digital activity is recorded from the device. We propose to study participants in Lebanon and SE Michigan in order to identify the fundamental acoustic elements of mood variation among bipolar patients. 2) apply integrated computational analyses using static (Gaussian Mixture Models and Support Vector Machines) and dynamic (Hidden Markov Models) modeling of categorical, dimensional and derived features from clinical, acoustic, and behavioral signals; we will compare data from the 15 BP from Lebanon and 15 BP from SE Michigan that have been resident in USA >2 years but originate from a geographical region comparable to Lebanon in language and culture, and 15 American born BP Caucasians (from our current cohort). Our hypothesis is that there are fundamental elements of acoustics that associate with mood states regardless of the culture. The impact is the longitudinal use of mobile technology to passively gather personal data to establish computational models that use extensive individual state and trait data to accurately predict mood and health states. This provides a foundation for predictive modeling that can be integrated into subsequent clinical interventional studies to predict and test causal effects of specific interventions on disease mechanisms. Expertise in clinical, computational, and technology disciplines form the team to realize these goals.
摘要:
基于言语中的行为和声学模式来对个人进行卫生保健优先级排序的能力将允许有效地使用卫生保健资源。使用源自移动的技术的声学的日常监测来预测情绪状态的能力为情绪和情感状态的实时代理测量提供了基础。识别和监测人类疾病的这些和其他方面的特征是预测结果的基础,为未来及时和减轻干预提供了可能性。技术和移动保健方法非常适合全球卫生界,因为这种方法具有灵活性和适应性;通过适度增加基础设施,可以很容易地扩大接触大量患者的能力。我们使用机器学习策略开发了一种准确的双相情感障碍(BP)患者情绪状态预测模型,并建立了一个过程,该过程包括预处理、特征提取以及对个人使用移动终端长达一年的临床和声学数据进行综合数据分析。结果显示,情绪状态的预测AUC统计值为0.74(躁狂)和0.77(抑郁)。我们假设跨文化的分析将确定可以使用我们的方法识别的疾病的共同特征。BP是理想的研究,因为情绪状态和气质特征的范围很广。本研究旨在1)确定来自黎巴嫩和密歇根州东南部多语言社区的30名BP患者和10名健康对照,使用智能手机记录日常声学和行为数据,收集来自设备的所有传出语音,并从设备记录所有个人数字活动。我们建议研究参与者在黎巴嫩和东南密歇根州,以确定双相情感障碍患者之间的情绪变化的基本声学元素。2)使用静态应用集成计算分析(高斯混合模型和支持向量机)和动态(隐马尔可夫模型)对来自临床、声学和行为信号的分类、维度和衍生特征进行建模;我们将比较居住在美国的来自黎巴嫩的15个BP和来自密歇根东南部的15个BP的数据。2岁,但来自语言和文化与黎巴嫩相当的地理区域,15名美国出生的BP高加索人(来自我们当前的队列)。我们的假设是,有声学的基本要素,与情绪状态,无论文化。其影响是纵向使用移动的技术被动收集个人数据,以建立计算模型,使用广泛的个人状态和特质数据来准确预测情绪和健康状态。这为预测建模提供了基础,可以将其整合到后续的临床干预研究中,以预测和测试特定干预措施对疾病机制的因果影响。临床、计算和技术学科的专业知识组成了实现这些目标的团队。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MELVIN G MCINNIS其他文献
MELVIN G MCINNIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MELVIN G MCINNIS', 18)}}的其他基金
Longitudinal Voice Patterns in Bipolar Disorder
双相情感障碍的纵向声音模式
- 批准号:
8658149 - 财政年份:2013
- 资助金额:
$ 17.26万 - 项目类别:
Longitudinal Voice Patterns in Bipolar Disorder
双相情感障碍的纵向声音模式
- 批准号:
8494970 - 财政年份:2013
- 资助金额:
$ 17.26万 - 项目类别:
Fine mapping 8q24 in Familial Bipolar Disorder
家族性双相情感障碍中 8q24 的精细定位
- 批准号:
7067205 - 财政年份:2005
- 资助金额:
$ 17.26万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder
青少年患家族性躁郁症的高风险
- 批准号:
7369867 - 财政年份:2005
- 资助金额:
$ 17.26万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder
青少年患家族性躁郁症的高风险
- 批准号:
7577331 - 财政年份:2005
- 资助金额:
$ 17.26万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder.
青少年患有家族性双相情感障碍的高风险。
- 批准号:
7068014 - 财政年份:2005
- 资助金额:
$ 17.26万 - 项目类别:
Fine mapping 8q24 in Familial Bipolar Disorder
家族性双相情感障碍中 8q24 的精细定位
- 批准号:
7228197 - 财政年份:2005
- 资助金额:
$ 17.26万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder.
青少年患有家族性双相情感障碍的高风险。
- 批准号:
7225902 - 财政年份:2005
- 资助金额:
$ 17.26万 - 项目类别:
Fine mapping 8q24 in Familial Bipolar Disorder
家族性双相情感障碍中 8q24 的精细定位
- 批准号:
6869005 - 财政年份:2005
- 资助金额:
$ 17.26万 - 项目类别:
Adolescents at High Risk for Familial Bipolar Disorder.
青少年患有家族性双相情感障碍的高风险。
- 批准号:
6875444 - 财政年份:2005
- 资助金额:
$ 17.26万 - 项目类别:
相似海外基金
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 17.26万 - 项目类别:
Evaluating Centralizing Interventions to Address Low Adherence to Lung Cancer Screening Follow-up in Decentralized Settings
评估集中干预措施,以解决分散环境中肺癌筛查随访依从性低的问题
- 批准号:
10738120 - 财政年份:2023
- 资助金额:
$ 17.26万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10526768 - 财政年份:2022
- 资助金额:
$ 17.26万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10701072 - 财政年份:2022
- 资助金额:
$ 17.26万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10679092 - 财政年份:2021
- 资助金额:
$ 17.26万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10432133 - 财政年份:2021
- 资助金额:
$ 17.26万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10327065 - 财政年份:2021
- 资助金额:
$ 17.26万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10377366 - 财政年份:2019
- 资助金额:
$ 17.26万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10574496 - 财政年份:2019
- 资助金额:
$ 17.26万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 17.26万 - 项目类别: