Analysis of the Molecular Mechanisms of Telomerase Recruitment to Telomeres and Telomerase Catalysis
端粒酶招募端粒及端粒酶催化的分子机制分析
基本信息
- 批准号:9331708
- 负责人:
- 金额:$ 3.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAffinity ChromatographyAlpha CellAplastic AnemiaApoptosisBindingBiochemicalBiologicalBiological AssayBiologyBiophysicsCatalysisCell CycleCell Cycle StageCell LineCell NucleusCellsCellular StructuresCellular biologyChromosomesComplexCore FacilityDNA DamageDNA SequenceDNA biosynthesisDefectDyskeratosis CongenitaEnsureEnvironmentEnzymesEventFacultyFailureFluorescent in Situ HybridizationFoundationsFutureGeneticGerm CellsGoalsGrantHumanHuman ChromosomesImmunofluorescence ImmunologicInstitutesInstitutionLeadLearningLengthMalignant NeoplasmsMass Spectrum AnalysisMeasuresMentorshipMethodsMicroscopyMolecularMolecular AnalysisMonitorNucleotidesPhasePhosphotransferasesPlayPositioning AttributePost-Translational Modification AlterationPost-Translational Protein ProcessingProcessPropertyProteinsProteomicsPulmonary FibrosisRNARNA ProcessingRNA-Directed DNA PolymeraseRecruitment ActivityRegulationResearchResearch PersonnelResolutionRoleRunningS PhaseSecureSingle-Stranded DNASiteStem cellsTERF1 geneTINF2 geneTelomeraseTelomerase RNA ComponentTelomere MaintenanceTherapeuticTimeTrainingVisitbasebiophysical propertiescancer cellcareerexperienceexperimental studygenome analysisgenome editinghuman diseaseinterdisciplinary approachkinase inhibitorlive cell imagingnovel strategiesoverexpressionpost-doctoral trainingpreventprogramsprotein complexprotein protein interactionsenescencesingle moleculespatiotemporaltelomeretooltrafficking
项目摘要
Summary/Abstract
Human chromosomes end in telomeres, repetitive DNA sequences that are bound by the Shelterin
protein complex (1). During semi-conservative DNA replication the extreme ends of a chromosome are
unable to be duplicated, leading to successive chromosome shortening. Once telomeres reach a critical
length, cells enter senescence or undergo apoptosis (2). To counteract chromosome shortening,
continuously dividing cells, such as germ cells, stem cells, and most cancer cells, express telomerase,
an RNA-containing reverse transcriptase (3). Telomerase is a unique enzyme that processively adds
telomeric repeats, copied from its RNA component, to the single-stranded DNA overhang of
chromosome ends (4). The molecular mechanisms that govern telomerase processivity are poorly
defined, but are critical to understand telomere maintenance.
The Shelterin complex carries out two key functions at telomeres; it prevents telomeres from
being recognized as sites of DNA damage, and it recruits telomerase to telomeres (5,6). Telomerase
recruitment to telomeres is a tightly regulated process. Telomerase resides in Cajal bodies, specialized
RNA-processing compartments in the nucleus, throughout most of the cell cycle. During S-phase,
telomerase is recruited to telomeres to maintain telomere length (7). Although the protein-protein
interactions required for telomerase to associate with telomeres are well understood, the spatio-
temporal control of telomerase recruitment is poorly defined (7). Potential mechanisms for regulating
telomerase recruitment include alterations in composition of telomerase and the shelterin complex or
post-translational modification of its components.
Telomere maintenance plays an important role in multiple human diseases. Deficiencies in
telomerase assembly, activity, or recruitment to telomeres cause dyskeratosis congenita, pulmonary
fibrosis, and aplastic anemia, severe human conditions characterized by stem cell failure (8). In
addition, 90% of cancers rely on telomerase activity to allow them to divide indefinitely (9). Therefore,
understanding the basic biology of telomerase recruitment to telomeres and telomerase catalysis could
lead to novel approaches to modulate this process as a therapeutic approach for several human
diseases. I propose to analyze the molecular mechanisms underlying telomerase recruitment to
telomeres and telomerase catalysis using genome editing and a combination of cell biological,
proteomic, biochemical, and single-molecule approaches. In particular I will:
1. Determine the molecular mechanisms that drive telomerase recruitment to telomeres in S-
Phase. Using genome-edited cell lines expressing tagged telomerase and shelterin components, I will
conduct live cell imaging of telomerase trafficking to telomeres, analyze the assembly state of
telomerase and the shelterin complex throughout the cell cycle using cell biological and proteomic
approaches, and identify kinases that modulate telomerase trafficking.
2. Define the biochemical and biophysical properties of telomerase. Using single molecule
approaches, I will assess the oligomeric state of telomerase, the biophysical properties that control its
intrinsic processivity, and the impact of the interaction of TPP1 with telomerase on its catalytic cycle.
The K99 phase of the proposed aims will be conducted under the mentorship of Dr. Tom Cech,
who has an extraordinary track record in training post-doctoral fellows, with over 30 former mentees in
faculty positions at prestigious research institutions worldwide. The Cech lab is an established leader in
the biochemical and structural analysis of telomerase. In combination with my strong expertise in cell
biological and microscopy-based approaches, the Cech lab provides an ideal environment to carry out
the majority of the proposed research. For the proteomic analysis of shelterin assembly I will
collaborate with the lab of Dr. Natalie Ahn, a leading researcher in using mass spectrometry to study
protein post-translational modifications. Dr. Ahn's expertise and the proteomics core facility at the
BioFrontiers Institute will allow me develop a strong foundation in using mass-spectrometry as a core
discovery tool, a critical learning experience that will facilitate my short term goals and my future
independent career.
My goal for the K99 phase is to initiate Aims 1 and 2 of the proposal and build a strong
foundation for the transition to becoming an independent investigator at a US research institution. My
long term goal is to run a research program focused on the molecular mechanisms that ensure
chromosomal integrity, a process defective in a large number of human diseases, using multi-
disciplinary approaches including cell biological, biochemical, biophysical, proteomic, and genetic
methods. A K99 grant would greatly aid me by providing critical training, helping me secure a faculty
position, and allowing me to jumpstart my career as independent researcher.
总结/摘要
人类染色体以端粒结束,端粒是由庇护蛋白结合的重复DNA序列。
蛋白复合物(1)。在半保守的DNA复制过程中,染色体的末端是
无法复制,导致染色体连续缩短。一旦端粒达到一个临界点,
长度,细胞进入衰老或经历凋亡(2)。为了抵消染色体缩短,
连续分裂的细胞如生殖细胞、干细胞和大多数癌细胞,表达端粒酶,
含RNA的逆转录酶(3)。端粒酶是一种独特的酶,
端粒重复序列,从其RNA组分复制到单链DNA突出端,
染色体末端(4)。控制端粒酶持续合成能力的分子机制
定义,但对理解端粒的维护至关重要。
Shelterin复合物在端粒上执行两个关键功能:
它被认为是DNA损伤的位点,并且它将端粒酶招募到端粒(5,6)。端粒酶
端粒的补充是一个严格调控的过程。端粒酶存在于卡哈尔体中,
在细胞周期的大部分时间里,细胞核中的RNA加工区室。在S期,
端粒酶被募集到端粒以维持端粒长度(7)。虽然蛋白质-蛋白质
端粒酶与端粒结合所需的相互作用是很好理解的,
端粒酶募集的时间控制定义不明确(7)。潜在的调节机制
端粒酶募集包括端粒酶和shelterin复合物组成的改变,
其组分的翻译后修饰。
端粒的维持在多种人类疾病中起着重要作用。缺陷
端粒酶组装、活性或募集至端粒引起先天性肺角化不良
纤维化和再生障碍性贫血,严重的人类疾病特征是干细胞衰竭(8)。在
此外,90%的癌症依赖于端粒酶活性,使它们能够无限分裂(9)。因此,我们认为,
了解端粒酶募集到端粒和端粒酶催化的基础生物学,
从而导致调节该过程新方法作为几种人的治疗方法
疾病我建议分析端粒酶募集的分子机制,
端粒和端粒酶催化使用基因组编辑和细胞生物学,
蛋白质组学、生物化学和单分子方法。我尤其将:
1.确定驱动端粒酶募集到S-细胞端粒的分子机制,
相位使用基因组编辑的表达标记端粒酶和shelterin成分的细胞系,我将
进行端粒酶向端粒运输的活细胞成像,分析端粒的组装状态,
端粒酶和shelterin复合物在整个细胞周期中的作用
方法,并确定调节端粒酶运输的激酶。
2.定义端粒酶的生物化学和生物物理特性。使用单分子
方法,我将评估端粒酶的寡聚状态,控制其生物物理特性,
内在的持续合成能力,以及TPP 1与端粒酶的相互作用对其催化循环的影响。
拟议目标的K99阶段将在Tom Cech博士的指导下进行,
他在培养博士后研究员方面有着非凡的记录,
在全球著名研究机构担任教职。切赫实验室是一个公认的领导者,
端粒酶的生化和结构分析。结合我在细胞方面的丰富专业知识
生物和显微镜为基础的方法,切赫实验室提供了一个理想的环境,
大部分的研究建议。对于shelterin组装的蛋白质组学分析,
与Natalie Ahn博士的实验室合作,Natalie Ahn博士是使用质谱法研究
蛋白质翻译后修饰。安博士的专业知识和蛋白质组学的核心设施,
生物前沿研究所将使我在使用质谱作为核心方面打下坚实的基础
发现工具,一个关键的学习经验,将促进我的短期目标和我的未来
独立的职业生涯。
我在K99阶段的目标是启动提案的目标1和2,并建立一个强大的
为过渡到成为美国研究机构的独立调查员奠定了基础。我
长期目标是开展一项研究计划,重点是确保
染色体完整性,在大量的人类疾病中有缺陷的过程,使用多-
包括细胞生物学、生物化学、生物物理学、蛋白质组学和遗传学在内的学科方法
方法. K99的资助将通过提供关键性培训来帮助我,帮助我获得一名教师,
这让我有机会开始我的独立研究员生涯。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Live-cell imaging reveals the dynamics of PRC2 and recruitment to chromatin by SUZ12-associated subunits.
- DOI:10.1101/gad.311936.118
- 发表时间:2018-06-01
- 期刊:
- 影响因子:10.5
- 作者:Youmans DT;Schmidt JC;Cech TR
- 通讯作者:Cech TR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jens Christopher Schmidt其他文献
Jens Christopher Schmidt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jens Christopher Schmidt', 18)}}的其他基金
Defining the role of TCAB1 and its phase separation in telomerase assembly.
定义 TCAB1 的作用及其在端粒酶组装中的相分离。
- 批准号:
10796472 - 财政年份:2021
- 资助金额:
$ 3.61万 - 项目类别:
Defining the role of TCAB1 and its phase separation in telomerase assembly.
定义 TCAB1 的作用及其在端粒酶组装中的相分离。
- 批准号:
10178904 - 财政年份:2021
- 资助金额:
$ 3.61万 - 项目类别:
Defining the role of TCAB1 and its phase separation in telomerase assembly.
定义 TCAB1 的作用及其在端粒酶组装中的相分离。
- 批准号:
10670264 - 财政年份:2021
- 资助金额:
$ 3.61万 - 项目类别:
Defining the role of TCAB1 and its phase separation in telomerase assembly.
定义 TCAB1 的作用及其在端粒酶组装中的相分离。
- 批准号:
10474274 - 财政年份:2021
- 资助金额:
$ 3.61万 - 项目类别:
Molecular Mechanisms of Telomerase Catalysis and its Recruitment to Telomeres
端粒酶催化及其向端粒募集的分子机制
- 批准号:
9898387 - 财政年份:2016
- 资助金额:
$ 3.61万 - 项目类别:
Analysis of the Molecular Mechanisms of Telomerase Recruitment to Telomeres and Telomerase Catalysis
端粒酶招募端粒及端粒酶催化的分子机制分析
- 批准号:
9162424 - 财政年份:2016
- 资助金额:
$ 3.61万 - 项目类别:
相似海外基金
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10506915 - 财政年份:2021
- 资助金额:
$ 3.61万 - 项目类别:
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10325006 - 财政年份:2021
- 资助金额:
$ 3.61万 - 项目类别:
SBIR Phase I: A New Class of Immobilized Metal Affinity Chromatography Resins
SBIR 第一阶段:一类新型固定金属亲和色谱树脂
- 批准号:
1746198 - 财政年份:2018
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant
Marine speciation of nickel using immobilized nickel affinity chromatography
使用固定镍亲和色谱法测定镍的海洋形态
- 批准号:
512537-2017 - 财政年份:2017
- 资助金额:
$ 3.61万 - 项目类别:
University Undergraduate Student Research Awards
I-Corps: Commercialization of Immobilized Metal Affinity Chromatography Resins Based on Nanomaterials
I-Corps:基于纳米材料的固定化金属亲和层析树脂的商业化
- 批准号:
1404605 - 财政年份:2014
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant
Antibody Purification via Affinity Chromatography that Utilizes the Unconventional Nucleotide Binding Site
利用非常规核苷酸结合位点通过亲和色谱法纯化抗体
- 批准号:
1263713 - 财政年份:2013
- 资助金额:
$ 3.61万 - 项目类别:
Continuing Grant
Development of multivalent DNA network based affinity chromatography diagnostics for isolating circulating tumour cells
开发基于多价 DNA 网络的亲和色谱诊断法,用于分离循环肿瘤细胞
- 批准号:
425749-2012 - 财政年份:2012
- 资助金额:
$ 3.61万 - 项目类别:
Postgraduate Scholarships - Master's
Next-Generation Affinity Chromatography with PEGylated Ligands
使用聚乙二醇化配体的新一代亲和色谱法
- 批准号:
1159886 - 财政年份:2012
- 资助金额:
$ 3.61万 - 项目类别:
Standard Grant
Immobilized zirconium ion affinity chromatography for specific enrichment of phosphoproteins
用于磷蛋白特异性富集的固定化锆离子亲和层析
- 批准号:
19560760 - 财政年份:2007
- 资助金额:
$ 3.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating drug discovery using frontal affinity chromatography/mass spectrometry
使用正面亲和色谱/质谱加速药物发现
- 批准号:
234753-2000 - 财政年份:2003
- 资助金额:
$ 3.61万 - 项目类别:
Collaborative Research and Development Grants