Generalizable Deep Learning Networks for Dual-tracer Amyloid/Tau PET/MRI Imaging of Alzheimer's Disease
用于阿尔茨海默病双示踪剂淀粉样蛋白/Tau PET/MRI 成像的可推广深度学习网络
基本信息
- 批准号:10214874
- 负责人:
- 金额:$ 10.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2021-07-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAmericanAmyloidAmyloid ProteinsBiological MarkersBrainCause of DeathCerebrumClinicalClinical TrialsCognitiveDataDementiaDepositionDiagnosticDoseDrowningEarly DiagnosisEvaluationFollow-Up StudiesFutureHourImageImpaired cognitionIndividualInjectionsInvestigative TechniquesLongitudinal StudiesMRI ScansMachine LearningMagnetic Resonance ImagingMeasuresMethodsModelingMultimodal ImagingNeurodegenerative DisordersNeurofibrillary TanglesOutcomeParticipantPathogenesisPatient RecruitmentsPatientsPerformancePopulationPositron-Emission TomographyProteinsProtocols documentationPublic HealthRadiation Dose UnitRadioactivityReadingResearch DesignResearch PersonnelRiskRunningScanningScheduleSignal TransductionSiteSystemTechniquesTestingTracerTrainingUnited StatesVisitVulnerable PopulationsWorkapolipoprotein E-4baseclinical applicationconvolutional neural networkcostdeep learningdeep neural networkflexibilityimaging agentimaging studyinnovationlearning networklongitudinal positron emission tomographymachine learning methodmild cognitive impairmentmultimodalityneuroimagingnovelpre-clinicalradiotracerrecruitresearch studyserial imagingsexsimulationstudy populationtau Proteinstheoriesuptake
项目摘要
Project Summary
Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder and a major public health crisis,
currently affecting over 5.8 million Americans and expected to rise as the population ages. Positron emission
tomography (PET) imaging can identify the hallmark proteinopathies of AD, including amyloid protein plaques
and neurofibrillary tangles (composed primarily of tau protein) accumulating in the brain. While there is evident
need for more PET neuroimaging, for example, to elucidate the sequence of amyloid and tau deposition in
preclinical AD, its increased utility in longitudinal imaging studies with large study populations is limited by
recruitment and cost. In particular, making multiple visits to the scanning site will be difficult for participants
living far away, and the high cost of injected radiotracers will limit the scalability of PET studies.
In this project we propose using deep learning-based convolutional neural networks (CNNs) to enhance
ultra-low-dose amyloid and tau PET for imaging AD. Our specific aims are (1) to validate the diagnostic value
of the CNNs in actual ultra-low-dose amyloid and tau imaging sessions, with the injected dose as low as 1% of
the original, and with actual ultra-low-dose data, to validate simulations for use in subsequent aims and future
studies; (2) to apply the ultra-low-dose CNN to data collected on other PET systems and tracers, in order to
demonstrate the CNN’s generalizability; and (3) to evaluate the value of deep learning-aided ultra-low-dose
amyloid and tau PET for tracking cognitive decline in a preclinical AD population.
The innovation of this work lies in using multimodal imaging in addition to advanced machine learning
techniques to enable acquisition of diagnostic-level PET images at extremely low dose levels. Performing
actual ultra-low-dose PET acquisitions is also highly novel in itself. The outcome of this proposal is removing
the limiting factors to large-scale clinical longitudinal imaging, shortening acquisitions spanning multiple days
and visits to several hours in one visit with a successive ultra-low-dose and full-dose dual-tracer scan protocol.
Significant dose reduction can also be achieved, allowing for more frequent amyloid/tau PET scanning. This
flexibility will not only increase the utility of PET, aid longitudinal studies in dementia, but enable future
comprehensive imaging of multiple PET-based biomarkers as these tracers are being developed.
项目摘要
阿尔茨海默病(AD)是一种毁灭性的神经退行性疾病,是一个重大的公共卫生危机,
目前影响了580多万美国人,预计随着人口老龄化,这一数字还会上升。正电子发射
断层扫描(PET)成像可以识别AD的标志性蛋白质病变,包括淀粉样蛋白斑块
以及神经元缠结(主要由tau蛋白组成)在脑中积累。虽然有明显的
需要更多的PET神经成像,例如,以阐明淀粉样蛋白和tau蛋白沉积的顺序,
临床前AD,其在具有大研究人群的纵向成像研究中增加的效用受到以下因素的限制:
招聘和成本。特别是,对参与者来说,多次访问扫描站点将是困难的
居住距离远,以及注射放射性示踪剂的高成本将限制PET研究的可扩展性。
在这个项目中,我们建议使用基于深度学习的卷积神经网络(CNN)来增强
超低剂量淀粉样蛋白和tau PET用于AD成像。我们的具体目标是(1)验证诊断价值
在实际的超低剂量淀粉样蛋白和tau成像会话中,CNNs的注射剂量低至
原始的,并与实际的超低剂量数据,以验证模拟用于随后的目标和未来
研究;(2)将超低剂量CNN应用于其他PET系统和示踪剂上收集的数据,以便
证明CNN的普适性;(3)评估深度学习辅助超低剂量的价值
淀粉样蛋白和tau PET用于跟踪临床前AD人群中的认知下降。
这项工作的创新之处在于,除了先进的机器学习之外,还使用了多模态成像
能够以极低剂量水平采集诊断级PET图像的技术。执行
实际的超低剂量PET采集本身也是非常新颖的。这项提议的结果是,
大规模临床纵向成像的限制因素,缩短跨越多天的采集
连续超低剂量和全剂量双示踪剂扫描方案,一次就诊数小时。
还可以实现显著的剂量降低,允许更频繁的淀粉样蛋白/tau PET扫描。这
灵活性不仅将增加PET的实用性,帮助痴呆症的纵向研究,而且使未来
随着这些示踪剂的开发,多种基于PET的生物标志物的综合成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Tze-Hsiang Chen其他文献
Kevin Tze-Hsiang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 10.09万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 10.09万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 10.09万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 10.09万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 10.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 10.09万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 10.09万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 10.09万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 10.09万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 10.09万 - 项目类别:
Miscellaneous Programs