Targeting the regulatory mechanism of hyphae to lateral yeast growth as a novel therapeutic approach against candidiasis
针对菌丝对侧向酵母生长的调节机制作为对抗念珠菌病的新治疗方法
基本信息
- 批准号:10215503
- 负责人:
- 金额:$ 39.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-09 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAntifungal AgentsAttentionBRCA1 geneBRCT DomainBindingBiological AssayBlood CirculationCandidaCandida albicansCandidiasisCarbonCathetersCellsCoinComplexCyclic AMPCyclic AMP-Dependent Protein KinasesDataDevelopmentDiseaseDisseminated candidiasisDistalDown-RegulationDrug resistanceEvaluationFDA approvedFilamentGene DeletionGenesGlucoseGoalsGrowthHumanHyphaeIn VitroInfectionInterruptionInvadedLateralLeadLibrariesLinkMediatingMedical DeviceMicrobial BiofilmsModelingMorphogenesisMusMycosesOrganPathogenesisPathway interactionsPatient-Focused OutcomesPharmaceutical PreparationsPharmacologyPhosphoric Monoester HydrolasesPhosphorylationPhosphorylation SitePlayProcessProductionProtein BiochemistryProtein DephosphorylationProtein InhibitionProteinsRegulationRoleSaccharomycetalesSeptal RegionSignal TransductionSpecificitySumoylation PathwayTissuesVirulenceYeastsanalogcandidemiahigh throughput screeningin vivoinhibitor/antagonistlead candidatemouse modelnovelnovel therapeutic interventionnovel therapeuticspathogenic fungusprematurepreventprotein protein interactionras Proteinssmall molecule inhibitorsmall molecule librariestherapeutic targettrait
项目摘要
Abstract
A single species Candida albicans, causes half of all invasive fungal infections in humans. The ability of C.
albicans to switch reversibly between yeast and hyphe is a major virulence trait that helps it disseminate into
the bloodstream (yeast) and invade target organs (filaments). Yeast to hyphae morphogenesis has been
extensively studied and its regulation well understood. To the contrary, little is known about the reverse
process: hyphae to yeast growth. C. albicans hyphae produce yeast cells from their lateral septal regions,
coined as “lateral yeasts”. These lateral yeasts are always found with hyphae at the site of active infection,
are the major cells that re- enter the bloodstream and establish distal foci of infection. In fact, lateral yeast
cells released from the hyphal layers of biofilm-contaminated catheters have direct access into the
bloodstream. We identified the first regulator of hyphae-to-lateral yeast growth, PES1 and have shown that
blocking the process (by depleting PES1 in vivo) can abrogate disseminated candidiasis as well as biofilm-
associated candidemia. Nothing is known on the regulatory aspects pf PES1. Our preliminary studies show
that phosphorylation of Pes1 by Ras-PKA inhibits lateral yeast growth while its dephosphorylation by a Ras-
linked phosphatase Yvh1 activates lateral yeast emergence from hyphae and induces biofilm dispersal. Using
PES1 as a target for identifying small molecule inhibitors of lateral yeast growth, identified alexidine
dihydrochloride that directly inhibited both Pes1 and Yvh1 and protected mice from biofilm-associated
disseminated candidiasis. Here, using protein biochemistry assays, we propose to delineate how signaling
through Ras-PKA regulates Pes1. We will identify other cognate regulators that interact with Pes1 to control
lateral yeast growth, and use this information to discover novel compounds that can interrupt hyphae to lateral
yeast growth and disseminated candidiasis. Ultimately, better outcomes for patients with indwelling medical
devices is the goal of this application.
抽象的
单一物种白色念珠菌引起人类所有侵袭性真菌感染的一半。 C的能力。
白色念珠菌在酵母和菌丝之间可逆地转换是一个主要的毒力特征,有助于其传播到
进入血液(酵母)并侵入目标器官(丝)。酵母菌到菌丝的形态发生
进行了广泛的研究并且对其调节进行了很好的理解。相反,人们对相反的情况知之甚少
过程:菌丝到酵母生长。白色念珠菌菌丝从其侧隔膜区域产生酵母细胞,
被称为“侧向酵母”。这些侧向酵母总是在活跃感染部位发现有菌丝,
是重新进入血流并建立远端感染灶的主要细胞。事实上,侧向酵母
从生物膜污染的导管的菌丝层释放的细胞可以直接进入
血流。我们确定了第一个菌丝到侧向酵母生长的调节因子 PES1,并表明
阻断这一过程(通过体内消耗 PES1)可以消除播散性念珠菌病以及生物膜。
相关的念珠菌血症。 PES1 的监管方面一无所知。我们的初步研究表明
Ras-PKA 对 Pes1 的磷酸化会抑制酵母的横向生长,而 Ras-PKA 对 Pes1 的去磷酸化会抑制酵母的横向生长。
连接磷酸酶 Yvh1 激活酵母菌从菌丝中横向出现并诱导生物膜分散。使用
PES1作为识别酵母横向生长小分子抑制剂的靶点,鉴定出alexidine
二盐酸盐直接抑制 Pes1 和 Yvh1 并保护小鼠免受生物膜相关的影响
播散性念珠菌病。在这里,我们建议使用蛋白质生物化学测定来描述信号传导如何
通过 Ras-PKA 调节 Pes1。我们将确定与 Pes1 相互作用的其他同源调节因子来控制
侧向酵母生长,并利用这些信息来发现可以中断菌丝侧向生长的新化合物
酵母菌生长和传播念珠菌病。最终,为留置医疗的患者带来更好的结果
devices 是此应用程序的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PRIYA UPPULURI其他文献
PRIYA UPPULURI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PRIYA UPPULURI', 18)}}的其他基金
Targeting evolutionarily acquired insertion sequences in Candida species, for development of antifungal drugs
针对念珠菌物种中进化获得的插入序列,用于开发抗真菌药物
- 批准号:
10592776 - 财政年份:2022
- 资助金额:
$ 39.32万 - 项目类别:
Targeting the regulatory mechanism of hyphae to lateral yeast growth as a novel therapeutic approach against candidiasis
针对菌丝对侧向酵母生长的调节机制作为对抗念珠菌病的新治疗方法
- 批准号:
10447678 - 财政年份:2019
- 资助金额:
$ 39.32万 - 项目类别:
Targeting the regulatory mechanism of hyphae to lateral yeast growth as a novel therapeutic approach against candidiasis
针对菌丝对侧向酵母生长的调节机制作为对抗念珠菌病的新治疗方法
- 批准号:
9817046 - 财政年份:2019
- 资助金额:
$ 39.32万 - 项目类别:
相似海外基金
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
- 批准号:
MR/Y002164/1 - 财政年份:2024
- 资助金额:
$ 39.32万 - 项目类别:
Research Grant
Engineering microbial cell factories for production of improved polyene antifungal agents
工程微生物细胞工厂用于生产改进的多烯抗真菌剂
- 批准号:
2898887 - 财政年份:2023
- 资助金额:
$ 39.32万 - 项目类别:
Studentship
Morphological profiling for the development of antifungal agents
用于开发抗真菌药物的形态分析
- 批准号:
22H02216 - 财政年份:2022
- 资助金额:
$ 39.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An efficient approach to find therapeutically effective antifungal agents
寻找治疗有效的抗真菌药物的有效方法
- 批准号:
22K05337 - 财政年份:2022
- 资助金额:
$ 39.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating light-activated therapeutic compounds as antifungal agents.
研究光激活治疗化合物作为抗真菌剂。
- 批准号:
2753345 - 财政年份:2022
- 资助金额:
$ 39.32万 - 项目类别:
Studentship
Discovery of novel therapeutic agents for biliary tract and pancreatic cancer based on antifungal agents
基于抗真菌药物的胆道癌和胰腺癌新型治疗药物的发现
- 批准号:
20H03533 - 财政年份:2020
- 资助金额:
$ 39.32万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of antifungal agents that target essential protein kinases in A. fumigatus.
开发针对烟曲霉必需蛋白激酶的抗真菌剂。
- 批准号:
2456629 - 财政年份:2020
- 资助金额:
$ 39.32万 - 项目类别:
Studentship
Elucidation of tip growth factor of fungi and construction of screeing system for antifungal agents
真菌尖端生长因子的阐明及抗真菌药物筛选体系的构建
- 批准号:
19K05738 - 财政年份:2019
- 资助金额:
$ 39.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ambruticins: An inspiration to develop novel biocatalysts and antifungal agents
Ambruticins:开发新型生物催化剂和抗真菌剂的灵感
- 批准号:
2107517 - 财政年份:2018
- 资助金额:
$ 39.32万 - 项目类别:
Studentship