Neutralization Fingerprinting Analysis of Polyclonal Antibody Responses against HIV-1

HIV-1 多克隆抗体反应的中和指纹图谱分析

基本信息

  • 批准号:
    9407909
  • 负责人:
  • 金额:
    $ 65.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-06 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary HIV-1 poses a substantial health and economic burden, with more than 30 million people currently infected worldwide. The search for an effective HIV-1 vaccine remains a top priority, and a deeper understanding of how the immune system recognizes HIV-1 can help inform vaccine design. Lately, much effort has focused on understanding the antibody responses to HIV-1 infection. However, the polyclonal neutralizing antibody responses in an individual are very complex. Standard methods for mapping such responses include various experimental techniques, but more recently, computational methods were also developed. These computational methods, which we call NFP (neutralization fingerprinting), are based on analysis of serum neutralization data that is typically obtained in the very first stages of donor sample characterization, and are therefore an efficient technology for accurately mapping antibody specificities in polyclonal responses. The NFP algorithms have already become an important tool in the HIV field and are being used extensively by laboratories throughout the world, including Duke CHAVI-ID, CAPRISA, NIH VRC, and MHRP. Here, we propose to develop next-generation NFP algorithms and apply them to address biological questions with important implications for understanding the interactions between HIV-neutralizing antibodies and the virus. Specifically, we will develop and apply novel algorithms for: (1) Antibody specificity prediction with significantly improved accuracy and reliability. These algorithms will immensely improve the utility of the NFP approach for prospective identification of antibody specificities in polyclonal sera. (2) Mapping broadly neutralizing antibody responses against novel epitopes on HIV-1 Env. We will use epitope- structural analysis and computational search algorithms to identify novel Env epitopes, and will screen donor samples for the presence of related NFP signals. Promising signals for novel antibody specificities will be characterized further through collaborations. (3) Population-level analysis of broadly neutralizing antibody responses to HIV-1. We will analyze large collections of samples from diverse HIV infection cohorts in order to determine common antibody specificities elicited in response to HIV-1, as well as patterns of potential association between features of the infecting virus sequence and the elicited epitope specificities. The proposed NFP algorithms will be made available to the public, and will be useful in a number of high-impact areas in the HIV field, including mapping of antibody specificities in previously uncharacterized samples, identification of novel Env epitopes, and large-scale analysis of broadly neutralizing antibody responses within a cohort, or at a population level. Overall, this work will lead to a better understanding of the neutralizing antibody responses against HIV-1 and will build a more complete picture of the epitopes on Env. The proposed algorithmic framework should be generalizable to other important viruses, such as influenza and hepatitis C, and therefore has the potential for a far-reaching impact on public health.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivelin Georgiev其他文献

Ivelin Georgiev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivelin Georgiev', 18)}}的其他基金

Technologies for High-Throughput Mapping of Antigen Specificity to B-Cell-Receptor Sequence
B 细胞受体序列抗原特异性高通量作图技术
  • 批准号:
    10734412
  • 财政年份:
    2023
  • 资助金额:
    $ 65.07万
  • 项目类别:
Core 3: Single-Cell Core
核心3:单细胞核心
  • 批准号:
    10625690
  • 财政年份:
    2023
  • 资助金额:
    $ 65.07万
  • 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
  • 批准号:
    10478203
  • 财政年份:
    2020
  • 资助金额:
    $ 65.07万
  • 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
  • 批准号:
    10686168
  • 财政年份:
    2020
  • 资助金额:
    $ 65.07万
  • 项目类别:
Antibody repertoire characterization in the context of coronaviruses
冠状病毒背景下的抗体库表征
  • 批准号:
    10266227
  • 财政年份:
    2020
  • 资助金额:
    $ 65.07万
  • 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
  • 批准号:
    10081501
  • 财政年份:
    2020
  • 资助金额:
    $ 65.07万
  • 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
  • 批准号:
    10252047
  • 财政年份:
    2020
  • 资助金额:
    $ 65.07万
  • 项目类别:

相似海外基金

AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
  • 批准号:
    22K09863
  • 财政年份:
    2022
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2013
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
  • 批准号:
    22650002
  • 财政年份:
    2010
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2009
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
  • 批准号:
    262074-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
  • 批准号:
    0218568
  • 财政年份:
    2002
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
  • 批准号:
    9404947
  • 财政年份:
    1994
  • 资助金额:
    $ 65.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了