Neutralization Fingerprinting Analysis of Polyclonal Antibody Responses against HIV-1
HIV-1 多克隆抗体反应的中和指纹图谱分析
基本信息
- 批准号:9407909
- 负责人:
- 金额:$ 65.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-06 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmic AnalysisAlgorithmsAntibodiesAntibody ResponseAntibody SpecificityAntigensAreaBindingBiologicalCharacteristicsCollaborationsCollectionComplexComputer AnalysisComputing MethodologiesDataDerivation procedureDevelopmentDonor SelectionEconomic BurdenEpitope MappingEpitopesFingerprintGenerationsGeneticGoalsHIVHIV InfectionsHIV-1HIV-1 vaccineHepatitis CImmune systemIndividualInfectionInfluenza C VirusKnock-outLaboratoriesLeast-Squares AnalysisLettersMachine LearningMethodsMonoclonal AntibodiesMutationPatternPhenotypePopulationPublic HealthSamplingSerumSignal TransductionSpecificityTechniquesTechnologyUnited States National Institutes of HealthVaccine DesignValidationVariantVirusWorkbasecohorthealth economicsimprovedneutralizing antibodynext generationnovelpolyclonal antibodyprospectiveresponsesample collectiontool
项目摘要
Project Summary
HIV-1 poses a substantial health and economic burden, with more than 30 million people currently infected
worldwide. The search for an effective HIV-1 vaccine remains a top priority, and a deeper understanding of
how the immune system recognizes HIV-1 can help inform vaccine design. Lately, much effort has focused on
understanding the antibody responses to HIV-1 infection. However, the polyclonal neutralizing antibody
responses in an individual are very complex. Standard methods for mapping such responses include various
experimental techniques, but more recently, computational methods were also developed. These
computational methods, which we call NFP (neutralization fingerprinting), are based on analysis of serum
neutralization data that is typically obtained in the very first stages of donor sample characterization, and are
therefore an efficient technology for accurately mapping antibody specificities in polyclonal responses. The
NFP algorithms have already become an important tool in the HIV field and are being used extensively by
laboratories throughout the world, including Duke CHAVI-ID, CAPRISA, NIH VRC, and MHRP.
Here, we propose to develop next-generation NFP algorithms and apply them to address biological
questions with important implications for understanding the interactions between HIV-neutralizing antibodies
and the virus. Specifically, we will develop and apply novel algorithms for: (1) Antibody specificity prediction
with significantly improved accuracy and reliability. These algorithms will immensely improve the utility of
the NFP approach for prospective identification of antibody specificities in polyclonal sera. (2) Mapping
broadly neutralizing antibody responses against novel epitopes on HIV-1 Env. We will use epitope-
structural analysis and computational search algorithms to identify novel Env epitopes, and will screen donor
samples for the presence of related NFP signals. Promising signals for novel antibody specificities will be
characterized further through collaborations. (3) Population-level analysis of broadly neutralizing antibody
responses to HIV-1. We will analyze large collections of samples from diverse HIV infection cohorts in order
to determine common antibody specificities elicited in response to HIV-1, as well as patterns of potential
association between features of the infecting virus sequence and the elicited epitope specificities.
The proposed NFP algorithms will be made available to the public, and will be useful in a number of
high-impact areas in the HIV field, including mapping of antibody specificities in previously uncharacterized
samples, identification of novel Env epitopes, and large-scale analysis of broadly neutralizing antibody
responses within a cohort, or at a population level. Overall, this work will lead to a better understanding of the
neutralizing antibody responses against HIV-1 and will build a more complete picture of the epitopes on Env.
The proposed algorithmic framework should be generalizable to other important viruses, such as influenza and
hepatitis C, and therefore has the potential for a far-reaching impact on public health.
项目摘要
艾滋病毒-1造成了巨大的健康和经济负担,目前有3000多万人感染
全世界。寻找有效的艾滋病毒-1疫苗仍然是当务之急,并加深对
免疫系统如何识别HIV-1有助于指导疫苗设计。最近,很多努力都集中在
了解对HIV-1感染的抗体反应。然而,多克隆中和抗体
个体的反应是非常复杂的。用于映射这种响应的标准方法包括各种
实验技术,但最近,计算方法也被开发出来。这些
我们称之为NFP(中和指纹)的计算方法是基于对血清的分析
通常在供体样品表征的第一阶段获得的中和数据,并且是
因此,这是一种在多克隆反应中准确定位抗体特异性的有效技术。这个
NFP算法已经成为艾滋病毒领域的重要工具,并被
世界各地的实验室,包括杜克大学CHAVI-ID、CAPRISA、NIH VRC和MHRP。
在这里,我们建议开发下一代NFP算法,并将其应用于解决生物
对理解HIV中和抗体之间相互作用具有重要意义的问题
还有病毒。具体地说,我们将开发和应用新的算法来:(1)抗体特异性预测
具有显著提高的准确性和可靠性。这些算法将极大地提高
NFP方法用于多克隆血清中抗体特异性的前瞻性鉴定。(2)地图绘制
广泛中和针对HIV-1 env新表位的抗体反应。我们将使用表位-
结构分析和计算搜索算法识别新的环境抗原表位,并将筛选供体
对相关NFP信号的存在进行采样。研究新抗体特异性的有希望的信号将是
通过合作进一步表现出其特点。(3)广谱中和抗体的群体水平分析
对HIV-1的反应。我们将分析从不同的HIV感染队列收集的大量样本,以
以确定针对HIV-1的常见抗体特异性,以及潜在的模式
感染性病毒序列的特征与所激发的表位特异性之间的关系。
建议的NFP算法将向公众提供,并将在一些
艾滋病毒领域的高影响领域,包括绘制以前未确定的抗体特异性图
样本、新的env表位的鉴定和广谱中和抗体的大规模分析
在一个队列内,或在人口层面上的反应。总体而言,这项工作将有助于更好地理解
中和针对HIV-1的抗体反应,将建立一个更完整的环境抗原表位图景。
建议的算法框架应可推广到其他重要病毒,如流感和
丙型肝炎,因此有可能对公共卫生产生深远影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivelin Georgiev其他文献
Ivelin Georgiev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivelin Georgiev', 18)}}的其他基金
Technologies for High-Throughput Mapping of Antigen Specificity to B-Cell-Receptor Sequence
B 细胞受体序列抗原特异性高通量作图技术
- 批准号:
10734412 - 财政年份:2023
- 资助金额:
$ 65.07万 - 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
- 批准号:
10478203 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
- 批准号:
10686168 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
Antibody repertoire characterization in the context of coronaviruses
冠状病毒背景下的抗体库表征
- 批准号:
10266227 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
- 批准号:
10252047 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
High-throughput mapping of antigen specificity to B-cell-receptor sequence for characterizing antibody responses in HIV-vaccinated and infected individuals
B 细胞受体序列抗原特异性的高通量图谱,用于表征 HIV 疫苗接种者和感染者的抗体反应
- 批准号:
10081501 - 财政年份:2020
- 资助金额:
$ 65.07万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 65.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 65.07万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 65.07万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 65.07万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 65.07万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 65.07万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 65.07万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 65.07万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 65.07万 - 项目类别:
Standard Grant














{{item.name}}会员




