Motion Management of Pancreatic Cancer in MRI-Guided Radiotherapy

MRI 引导放射治疗中胰腺癌的运动管理

基本信息

  • 批准号:
    9023515
  • 负责人:
  • 金额:
    $ 33.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-03-01 至 2020-02-29
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Significance: Internal organ motion is one of the greatest technical challenges for pancreatic cancer radiation therapy. Extensive research has been conducted on intrafractional tumor motion. This research has provided quantification and enabled novel treatment methods to mitigate motion induced adverse dosimetry effects. Compared to widely studied lung tumor motion, improving pancreas treatment accuracy has equal or greater clinical importance where the tumor is surrounded by radiosensitive serial organs, sparing of which will significantly improve our ability to deliver more effective doses to the tumor. However, organ motion management in the pancreatic cancer treatment is severely underdeveloped due to technical challenges related to poor soft tissue X-ray and CT contrast of pancreas. Fiducial markers are not commonly placed and when placed, inadequately describe complicated multiple-organ motion. Innovation: MRI guided radiotherapy has the potential to overcome these challenges utilizing gated radiotherapy based on organ distances instead of a pre-selected breathing phase. However, to enable it for such pancreatic motion management, MRI acquisition speed needs to be increased so dynamic volumetric images can be acquired with sufficient quality for organ delineation. Furthermore, methods to rapidly digest both pre- and during-treatment MRI images for clinical motion management have not been developed. Both individualized motion margin and gated radiotherapy require explicit organ segmentation but manual delineation of the large number of imaging frames is impractical. Automated segmentation tools for pancreas have not been developed but urgently needed. We will acquire accelerated 3D MRI with sufficient quality for motion quantification by exploiting the spatial and temporal coherence of patient anatomy. We will develop a novel manifold clustering constrained dictionary learning (MCDL) method to efficiently segment the MRI images and provide accurate motion assessment for pancreas anatomy. We hypothesize that the improved motion monitoring will result in significantly improved tumor dose and surrounding normal organ sparing. Aims: 1. Develop methods to acquire 3D dynamic images from under-sampled k-space data. 2. Develop a process to auto-segment prospectively acquired accelerated MRI images by optimizing and validating a MCDL method. 3. Quantify dosimetric gains using accurately described pancreatic tumor motion. Test and robustness and deliverability of the proposed gated plans on a MRI-guided radiotherapy machine (ViewRay). Impact: Patients with locally advanced pancreatic adenocarcinoma have a dismal prognosis but the median survival can be significantly improved for patients who have complete local response. Success of the project will define more accurate patient specific motion margins and facilitate gated radiotherapy that significantly reduce critica organ doses, increase tumor doses for greater complete local response rates. Methods developed by this project will also be applicable to other tumors such as the cervical and liver cancer.
描述(由申请人提供):

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ke Sheng其他文献

Ke Sheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ke Sheng', 18)}}的其他基金

Bringing 4π radiation therapy to the clinic
将 4° 放射治疗引入诊所
  • 批准号:
    10464360
  • 财政年份:
    2022
  • 资助金额:
    $ 33.73万
  • 项目类别:
Bringing 4π radiation therapy to the clinic
将 4° 放射治疗引入诊所
  • 批准号:
    10618889
  • 财政年份:
    2022
  • 资助金额:
    $ 33.73万
  • 项目类别:
Development of A High Throughput Image-Guided IMRT System forPreclinical Research
开发用于临床前研究的高通量图像引导 IMRT 系统
  • 批准号:
    10827345
  • 财政年份:
    2021
  • 资助金额:
    $ 33.73万
  • 项目类别:
Development of A High Throughput Image-Guided IMRT System for Preclinical Research
开发用于临床前研究的高通量图像引导 IMRT 系统
  • 批准号:
    10317441
  • 财政年份:
    2021
  • 资助金额:
    $ 33.73万
  • 项目类别:
Development of A High Throughput Image-Guided IMRT System for Preclinical Research
开发用于临床前研究的高通量图像引导 IMRT 系统
  • 批准号:
    10434948
  • 财政年份:
    2021
  • 资助金额:
    $ 33.73万
  • 项目类别:
Robust IMPT with automated beam orientation and scanning spot optimization
具有自动光束定向和扫描点优化功能的稳健 IMPT
  • 批准号:
    10762796
  • 财政年份:
    2019
  • 资助金额:
    $ 33.73万
  • 项目类别:
Robust IMPT with automated beam orientation and scanning spot optimization
具有自动光束定向和扫描点优化功能的稳健 IMPT
  • 批准号:
    10112842
  • 财政年份:
    2019
  • 资助金额:
    $ 33.73万
  • 项目类别:
Robust IMPT with automated beam orientation and scanning spot optimization
具有自动光束定向和扫描点优化功能的稳健 IMPT
  • 批准号:
    10356142
  • 财政年份:
    2019
  • 资助金额:
    $ 33.73万
  • 项目类别:
Development of intensity modulated radiation therapy for small animal research
用于小动物研究的调强放射治疗的发展
  • 批准号:
    9434233
  • 财政年份:
    2017
  • 资助金额:
    $ 33.73万
  • 项目类别:
Motion Management of Pancreatic Cancer in MRI-Guided Radiotherapy
MRI 引导放射治疗中胰腺癌的运动管理
  • 批准号:
    9243999
  • 财政年份:
    2015
  • 资助金额:
    $ 33.73万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.73万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了