Analyzing the role of chromatin compaction in nuclear mechanics, structure, and function

分析染色质压缩在核力学、结构和功能中的作用

基本信息

  • 批准号:
    9452678
  • 负责人:
  • 金额:
    $ 9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2020-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary The nucleus is the organelle which must properly transduce or resist biophysical forces to dictate the spatial organization of the genome and to control mechanotransduction, factors which determine the expression profile of the cell. Previous studies revealed that the two major contributors to nuclear mechanics are lamins, intermediate filaments lining the inner nuclear envelope, and chromatin, which fills the nucleus. Alteration of lamins and chromatin compaction occur in many major human diseases including laminopathies and many cancers. These diseases present altered nuclear morphology as protrusions of the nucleus termed blebs. On the other hand, alteration of lamins and chromatin compaction/organization occurs in healthy cells during differentiation, during which nuclear, cell, and tissue mechanics and morphology can change drastically. Currently, the mechanistic basis for both disease-based nuclear blebs and healthy differentiation-based changes in nuclear morphology and mechanics is unknown. My postdoctoral studies found that chromatin and its histone-mediated compaction state dictated initial force response (< 30% strain) and morphology while also contributing as a secondary factor to the lamin A dictated strain stiffening at longer deformations. It is not known if higher order chromatin conformation dictating chromosome domains is another contributor to this non- genetic structural and resistive role of chromatin. To examine this, I first propose to use my developed microdissection, micromanipulation, and nanonewton-level force measurement approach to further elucidate the nuclear mechanics role of chromatin compaction through disruption of higher order chromatin conformation. During nuclear stretching experiments I will determine how the chromatin responds to nuclear deformation through imaging single chromosome loci (CRISPR labeling) and overall chromatin nano-structure (PWS microscopy). Second, I will investigate the mechanistic impact of increasing or decreasing chromatin compaction on the disease-relevant phenotype of nuclear blebbing by assaying for bleb occurrence with fluorescence and non-florescence fixed- and live-cell imaging techniques. Our preliminary data also reveal a novel role for chromatin compaction in nuclear blebbing, in that decondensation of chromatin alone leads to blebbing while condensation rescues it. I will then determine if nuclear blebs are a symptom or a cause of disease, via live cell imaging and biochemical techniques to assay for systemic DNA damage, proper transcription, and faithful segregation of genomic content in the bleb. Finally, I will use the well-established primary cell model of keratinocytes to investigate the basis of nuclear morphology changes during differentiation, progenitor to terminal, and loss of homeostasis upon Ras activation to mimic cancer transition. Through analyzing the contribution of chromatin compaction to nuclear mechanics, I aim to transition into an independent career investigating the mechanical basis of morphology changes observed for more than 70 years in both disease and in healthy cell differentiation.
项目摘要 细胞核是一种必须适当地抵抗或抵抗生物物理力以决定空间结构的细胞器。 基因组的组织和控制机械转导,决定表达的因素 细胞的轮廓。以前的研究表明,核力学的两个主要贡献者是核纤层, 中间丝内衬内核膜,染色质,它填充细胞核。改变 核纤层蛋白和染色质致密化发生在许多主要的人类疾病中, 癌的这些疾病表现为改变的核形态,如称为泡的核突起。对 另一方面,核纤层蛋白和染色质致密化/组织化改变发生在健康细胞, 在分化过程中,细胞核、细胞和组织的力学和形态会发生急剧变化。 目前,基于疾病的核泡和基于健康分化的核泡两者的机制基础都不清楚。 核形态学和力学的变化是未知的。我的博士后研究发现, 其组蛋白介导的压缩状态决定了初始力响应(<30%应变)和形态, 作为第二因素,在较长的变形下,对层压A的作用决定了应变硬化。不 已知如果决定染色体结构域的更高级染色质构象是这种非- 染色质的遗传结构和抗性作用。为了检验这一点,我首先建议使用我的发达国家, 显微切割,显微操作和纳米级力测量方法,以进一步阐明 通过破坏高级染色质的染色质致密化的核力学作用 构象在核拉伸实验中,我将确定染色质如何响应核拉伸, 通过成像单个染色体基因座(CRISPR标记)和整体染色质纳米结构的变形 (PWS显微术)。其次,我将研究增加或减少染色质的机械影响, 通过测定核泡发生率来压实核泡的疾病相关表型, 荧光和非荧光固定细胞和活细胞成像技术。我们的初步数据还显示, 染色质致密化在核起泡中的新作用,因为单独的染色质去致密化导致 然后我将确定核泡是一种症状还是一种原因, 疾病,通过活细胞成像和生化技术来检测系统性DNA损伤, 转录和基因组内容物在水泡中的忠实分离。最后,我将使用公认的 角质形成细胞的原代细胞模型,以研究细胞核形态变化的基础 分化,祖细胞到终末细胞,以及Ras激活后体内平衡的丧失,以模拟癌症转变。 通过分析染色质致密化对核力学的贡献,我的目标是过渡到一个 独立的职业生涯调查的形态变化的机械基础观察超过70 在疾病和健康细胞分化中的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Daniel Stephens其他文献

Andrew Daniel Stephens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Daniel Stephens', 18)}}的其他基金

Analyzing the role of chromatin compaction in nuclear mechanics, structure, and function
分析染色质压缩在核力学、结构和功能中的作用
  • 批准号:
    10454323
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
Analyzing the role of chromatin compaction in nuclear mechanics, structure, and function
分析染色质压缩在核力学、结构和功能中的作用
  • 批准号:
    10231265
  • 财政年份:
    2020
  • 资助金额:
    $ 9万
  • 项目类别:
Dissecting chromatin and lamin contributions to nuclear structure and function
剖析染色质和核纤层蛋白对核结构和功能的贡献
  • 批准号:
    8982675
  • 财政年份:
    2016
  • 资助金额:
    $ 9万
  • 项目类别:
Dissecting chromatin and lamin contributions to nuclear structure and function
剖析染色质和核纤层蛋白对核结构和功能的贡献
  • 批准号:
    9259730
  • 财政年份:
    2016
  • 资助金额:
    $ 9万
  • 项目类别:

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 9万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 9万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了