A simple assay system for rapid detection of circulating tumor cells

用于快速检测循环肿瘤细胞的简单测定系统

基本信息

  • 批准号:
    9411493
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-25 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Metastasis or dissemination of primary tumor cells is the major cause of mortality in cancer patients. Circulating tumor cells (CTCs) in the bloodstream are key players in the establishment of metastatic tumors. Recent studies demonstrated that the number of CTCs present in patient blood directly correlate with cancer progression, recurrence, and survival rate. Accurate detection of CTCs will provide critical information for proper management of cancer patients. Currently, the CellSearch(R) test is the only FDA-approved method for detection of CTCs in cancer patient blood. However, similar to all other antibody-mediated methods, this test requires multiple steps for sample preparation and cell labeling, which can cause loss of and damage to CTCs in blood samples and adversely affect the sensitivity and accuracy of the test. In addition, the requirement of multiple steps is time- and labor-consuming. In the proposed study, we aim to overcome these technical obstacles and develop a simple point-of-care assay by integrating a novel Tumor Cell-activation Aptamer Reporting system (TCAR) and innovative Spinning Disc Imaging Technology (iSDI). In contrast to current antibody-mediated multi-step tests, the TCAR system will be able to selectively highlight CTCs through natural cellular processes in whole blood within minutes using a single-step reaction. In addition, TCAR will provide no background or off-target signals and will not require a post-labeling cell wash. The iSDI technology will detect CTCs in a high-speed manner and record high-resolution images, similar to a Blu-ray disc player reading bits on disc. Compared to conventional automated fluorescence microscopes, the iSDI system is superior in sensitivity, speed, and operates at a lower cost. We hypothesize that this assay will be able to detect an accurate number of CTCs within minutes in whole blood samples through a single-step reaction, which will eliminate potential loss of and damage to CTCs in the samples. To test our hypothesis, three aims are proposed. We will optimize the TCAR system containing aptamer probes specific for EpCAM to selectively highlight carcinoma tumor cells in whole blood (Aim 1) while constructing and validating the iSDI system for coating, scanning, and imaging cells completely hands-free in minutes (Aim 2). In Aim 3, we will integrate the TCAR and iSDI systems, develop a point-of-care assay for rapid detection of CTCs, and validate the performance using tumor cells in normal human blood samples. We predict that this simple assay will provide high-definition morphology of CTCs along with their fluorescence identity in one step within minutes.
描述(由申请人提供):原发肿瘤细胞的转移或扩散是癌症患者死亡的主要原因。血液中的循环肿瘤细胞(CTC)是转移性肿瘤形成的关键因素。最近的研究表明,患者血液中存在的 CTC 数量与癌症进展、复发和生存率直接相关。准确检测 CTC 将为癌症患者的正确管理提供关键信息。目前,CellSearch(R) 测试是 FDA 批准的唯一用于检测癌症患者血液中 CTC 的方法。然而,与所有其他抗体介导的方法类似,该测试需要多个样品制备和细胞标记步骤,这可能会导致血液样本中 CTC 的丢失和损坏,并对测试的灵敏度和准确性产生不利影响。此外,需要多个步骤,既费时又费力。在拟议的研究中,我们的目标是克服这些技术障碍,并通过集成新型肿瘤细胞激活适体报告系统(TCAR)和创新的旋转盘成像技术(iSDI)来开发一种简单的现场检测。与当前抗体介导的多步测试相比,TCAR 系统将能够使用单步反应在几分钟内通过全血中的自然细胞过程选择性地突出 CTC。此外,TCAR 将不提供背景或脱靶信号,并且不需要标记后细胞清洗。 iSDI技术将以高速方式检测CTC并记录高分辨率图像,类似于蓝光光盘播放器读取光盘上的位。与传统的自动荧光显微镜相比,iSDI 系统在灵敏度、速度方面更胜一筹,并且运行成本更低。我们假设该检测将能够通过单步反应在几分钟内检测全血样本中准确数量的 CTC,这将消除样本中 CTC 的潜在损失和损坏。为了检验我们的假设,提出了三个目标。我们将优化包含 EpCAM 特异性适体探针的 TCAR 系统,以选择性地突出全血中的癌肿瘤细胞(目标 1),同时构建和验证 iSDI 系统,用于在几分钟内完全免提地涂覆、扫描和成像细胞(目标 2)。在目标 3 中,我们将集成 TCAR 和 iSDI 系统,开发一种用于快速检测 CTC 的即时检测方法,并使用正常人体血液样本中的肿瘤细胞验证其性能。我们预测这一简单的检测将在几分钟内一步提供 CTC 的高清形态及其荧光身份。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Hong其他文献

Bin Hong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了