Role of semaphorin signaling in neuronal recovery from dendritic injury: a comparative case study in-vitro and in-vivo
信号蛋白信号传导在树突损伤神经元恢复中的作用:体外和体内比较案例研究
基本信息
- 批准号:10358797
- 负责人:
- 金额:$ 45.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAxonBehaviorBiological AssayBiological ModelsCaenorhabditis elegansCase StudyCellsCommunitiesCuriositiesCustomDendritesDevelopmentDoctor of PhilosophyExhibitsFutureGenesGenomeGoalsImmobilizationIn VitroIndividualInjuryInstitutesInvertebratesKnock-outLasersLigandsLocomotor RecoveryMembraneMentorsMethodsMicrofluidic MicrochipsMicrosurgeryMolecularMorphogenesisMorphologyMotor NeuronsMusNatural regenerationNematodaNerve RegenerationNervous system structureNeuronsNeuropilin-1NeuropilinsNew JerseyOutputPathway interactionsPatternPhysiologic pulseProcessProteinsRecombinantsRecoveryRecovery of FunctionResearchResearch PersonnelRoleScientistSemaphorin-3Semaphorin-3ASemaphorinsSignal PathwaySignal TransductionSignaling MoleculeSmall Interfering RNASpinal cord injuryStudentsSynapsesTalentsTechnologyTestingTherapeuticTimeTrainingTransgenic OrganismsTraumatic Brain InjuryVertebratesaxon guidanceaxon regenerationbasecareercomparativedoctoral studentgraduate studenthigh schoolimprovedin vivoin vivo regenerationinjury recoverymembermutantneural circuitneural networkoverexpressionplexinreceptorreceptor functionrecruitrelating to nervous systemresponseresponse to injuryskillssynaptogenesisundergraduate student
项目摘要
Both axons and dendrites are damaged during traumatic brain injury and Spinal Cord Injury, causing a loss of
synaptic connectivity and neural network breakdown. Yet, most studies of neural regeneration focus on axons,
leaving dendritic responses to injury vastly unexplored. It is unknown whether and how dendrites reestablish
themselves, influence axonal regeneration, or even promote circuit reconnection. The proper patterning of axons
and dendrites during development, and regeneration, rely heavily on the precise morphogenesis of these
processes, which in turn relies on guidance molecule signaling. Here we focus on semaphorins and their
receptors, the plexins and neuropilins. Evolutionary conserved, the semaphorin signaling pathways are crucial
to the establishment of neural circuits from invertebrates to vertebrates during development but their involvement
in response from injury is unknown.
Our long-term goal is to determine the network, cellular, and molecular mechanisms that affect recovery from
injury. Our central hypotheses are that soluble semaphorins promote dendritic proliferation after injury, similar to
their role during development, while membrane-bound semaphorins are limiting factors that need to be overcome
to allow dendritic proliferation as well as synaptic formation. Here we set out to determine the shared fundamental
mechanisms in dendritic response to injury by leveraging the in-vivo approach using the invertebrate C. elegans,
with in-vitro methods based on mouse primary neuronal culture.
We will use a femtosecond-pulse laser to precisely disconnect individual dendrites of neurons in live, behaving
nematode and in a primary culture of mouse cortical neurons. For each of these complimentary model systems
we adapted a microfluidic device that will improve control of ligand application and survivability. We will then test
the roles of different semaphorins and plexins in response to dendritic transection by using C. elegans knockout
strains for their genes, as well as transgenic overexpression and siRNA to regulate the protein levels, and
application of synthetic Sema3A ligand and siRNA on mouse neurons. We will assay the time course of
morphological changes, synaptogenesis, neuronal activity in individual cells and the corresponding circuit, as
well as functional recovery of connections.
Together, these aims will examine, both in-vitro and in-vivo, roles of semaphorin signaling in neuronal response
after dendritic injury. Our anticipated results will uncover cellular and network mechanisms that share a molecular
signaling pathway. The proposed research will be carried out by a talented PhD candidate and several mentored
undergraduate students at the New Jersey Institute of Technology. We will recruit motivated, diverse, and
capable students, and encourage their curiosity and supporting their career goals. The skills and methods that
the participating young scientists will acquire will increase their desirability for the next steps in their career.
创伤性脑损伤和脊髓损伤期间轴突和树突都会受损,导致神经元丢失。
突触连接和神经网络崩溃。然而,大多数神经再生的研究集中在轴突,
使得树突状细胞对损伤的反应还未被广泛研究。树突是否以及如何重建尚不清楚
影响轴突再生,甚至促进回路重新连接。轴突的正确模式
发育和再生过程中的树突,在很大程度上依赖于这些细胞的精确形态发生。
这反过来又依赖于引导分子信号传导。在这里,我们重点关注信号素及其
神经丛蛋白和神经纤毛蛋白。在进化上保守,脑信号蛋白信号通路是至关重要的
从无脊椎动物到脊椎动物的神经回路的建立,
对损伤的反应是未知的。
我们的长期目标是确定网络,细胞和分子机制,影响恢复,
损伤我们的中心假设是可溶性脑信号蛋白促进损伤后树突的增殖,类似于
它们在发育过程中的作用,而膜结合信号蛋白是需要克服的限制因素
以允许树突增殖以及突触形成。在这里,我们开始确定共同的基本原则,
树突状细胞对损伤的反应机制,通过利用无脊椎动物C.优雅,
用基于小鼠原代神经元培养的体外方法。
我们将使用飞秒脉冲激光精确地断开活的神经元的单个树突,
线虫和小鼠皮层神经元的原代培养物中。对于每一个这些免费的模型系统
我们采用了一种微流体装置,该装置将改善配体应用的控制和存活性。然后我们将测试
利用C.研究不同信号蛋白和丛蛋白在树突状细胞横断反应中的作用。elegans基因敲除
菌株的基因,以及转基因过表达和siRNA来调节蛋白质水平,和
合成的Sema3A配体和siRNA在小鼠神经元上的应用。我们将分析
形态学变化、突触发生、单个细胞中的神经元活动和相应的回路,
以及连接的功能恢复。
这些目标将共同研究体外和体内信号蛋白信号传导在神经元反应中的作用
树突损伤后。我们的预期结果将揭示细胞和网络机制,共享一个分子
信号通路拟议的研究将由一位才华横溢的博士候选人和几位导师进行
新泽西理工学院的本科生。我们将招募积极的,多样化的,
有能力的学生,并鼓励他们的好奇心和支持他们的职业目标。技能和方法,
参与的年轻科学家将获得的知识将增加他们在职业生涯中下一步的可取性。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gal Haspel其他文献
Gal Haspel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 45.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Studentship
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
- 批准号:
22KF0399 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows