Identification of Precision Sepsis Subphenotypes Using Vital Sign Trajectories
使用生命体征轨迹精确识别脓毒症亚表型
基本信息
- 批准号:10350208
- 负责人:
- 金额:$ 17.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnti-Inflammatory AgentsBioinformaticsBiologicalBiological MarkersCardiovascular systemCessation of lifeClinicalClinical InformaticsClinical TrialsCommunicationComputer AssistedCritical CareCritical IllnessDataData ScienceData SetDevelopmentDiagnosticEarly identificationElectronic Health RecordFundingFutureGoalsHealthcare SystemsHeart RateHeterogeneityHospital CostsHospitalizationHourIV FluidImmuneImmune responseImmunologic MarkersImmunologicsImmunomodulatorsImmunophenotypingInfectionInpatientsInterventionKidneyLifeLiquid substanceMachine LearningMapsMeasurementMeasuresMedicineMentorsMethodsModelingNormal salineOutcomePatientsPhysiciansPhysiologicalPhysiologyPlasmaProcessPublishingResearchResuscitationScientistSepsisSepsis SyndromeSocietiesSubgroupSyndromeTemperatureTrainingTraining ProgramsUnited States National Institutes of HealthValidationWorkautoencoderbasebiobankcareercareer developmentclinically relevantcohortcomparativecrystalloidcytokinedeep learningdeep neural networkinnovationmachine learning algorithmmortalitymultiplex assaynovelpersonalized medicineprecision medicinepredicting responseprogramsresponseseptic patientssymposiumtooltreatment planningtreatment responseunsupervised learning
项目摘要
Project Abstract
The scientific goal of this K23 is to apply cutting-edge data science approaches to identify novel subphenotypes
within the heterogeneous sepsis syndrome. This K23 application proposes a 5-year training program to propel
Dr. Sivasubramanium Bhavani towards his career as an independent physician-scientist. Dr. Bhavani’s career
goal is to be an expert in developing computer-aided diagnostic tools to map the extensive clinical and biological
data in the electronic health record (EHR) to personalized treatment plans for critically ill patients. Dr. Bhavani
will accomplish this career goal by completing 3 short-term goals: 1) Gain expertise in unsupervised machine
learning, 2) Gain expertise in deep learning neural networks, and 3) Gain expertise in clinical informatics
principles for model application to real-world data. Dr. Bhavani has outlined an integrated program of didactics,
seminars, conferences, and consistent communication with expert mentors to provide the necessary career
development. Dr. Bhavani’s mentors are Dr. Craig Coopersmith, a past president of the Society of Critical Care
Medicine with a long career of NIH-funded sepsis research, and Dr. May Wang, a renowned expert in machine
learning. In addition, Dr. Bhavani’s advisors are Drs. John Hanfelt, Annette Esper, Matthew Semler and Matthew
Churpek, with collective expertise in longitudinal clustering, sepsis biomarkers, and bioinformatics. With the
support of the K23, Dr. Bhavani will contribute to the development of precision medicine approaches to sepsis.
Sepsis is a severe and heterogeneous syndrome characterized by a dysregulated host response to infection that
results in over 270,000 deaths in the U.S. annually. Decades of clinical trials have failed to identify therapies that
consistently benefit patients with sepsis. The one-size-fits-all treatment approach has not worked, and there is a
need to identify sepsis subphenotypes that may have different responses to treatment. To date, most studies
have identified sepsis subphenotypes using static measurements of labs and vital signs. However, sepsis is a
dynamic process with biological and physiological responses that evolve over minutes to hours. The objective of
this proposal is to identify novel sepsis subphenotypes using dynamic data, specifically longitudinal vital signs.
In Aim 1, Dr. Bhavani will apply cutting-edge machine learning algorithms to longitudinal vital signs to develop
and validate novel vitals trajectory subphenotypes. In Aim 2, Dr. Bhavani will investigate the immune signatures
of these subphenotypes. In Aim 3, Dr. Bhavani will study the responses of the subphenotypes to one of the most
common interventions in sepsis – intravenous fluids. Identification of subphenotypes with responses to different
fluids could shift sepsis management from a one-size-fits-all approach to a precision medicine approach – the
ultimate objective of sepsis subphenotypes. Through the training in this K23, Dr. Bhavani will be prepared for
R01-level work in a) refining subphenotypes by combining dynamic clinical and immunological data and b)
studying the responses of subphenotypes to additional treatments by using data from other RCTs.
项目摘要
这个K23的科学目标是应用尖端的数据科学方法来识别新的亚表型
异质性脓毒症综合征此K23应用程序提出了一个为期5年的培训计划,以推动
博士Sivasubramanium Bhavani走向他的职业生涯作为一个独立的物理学家,科学家。Bhavani博士的职业生涯
目标是成为开发计算机辅助诊断工具的专家,以绘制广泛的临床和生物学特征。
将电子健康记录(EHR)中的数据转化为重症患者的个性化治疗计划。Bhavani博士
我将通过完成3个短期目标来实现这个职业目标:1)获得无人监督机器方面的专业知识
2)获得深度学习神经网络的专业知识,3)获得临床信息学的专业知识
将模型应用于真实世界数据的原则。Bhavani博士概述了教学法的综合方案,
研讨会,会议,并与专家导师保持沟通,以提供必要的职业生涯
发展Bhavani博士的导师是重症监护协会前主席克雷格库珀史密斯博士
长期从事NIH资助的脓毒症研究的医学博士和著名的机器专家May Wang博士
学习此外,Bhavani博士的顾问是John Hanfelt博士,Annette Ehrman博士,Matthew Semler博士和Matthew
Churpek在纵向聚类、脓毒症生物标志物和生物信息学方面拥有集体专业知识。与
在K23的支持下,Bhavani博士将为败血症的精准医学方法的发展做出贡献。
脓毒症是一种严重的异质性综合征,其特征是宿主对感染的反应失调,
每年在美国造成超过27万人死亡几十年的临床试验都未能找到
持续有益于脓毒症患者。一刀切的治疗方法并没有奏效,
需要鉴定可能对治疗有不同反应的脓毒症亚表型。迄今为止,大多数研究
已经使用实验室和生命体征的静态测量确定了脓毒症的亚表型。然而,败血症是一种
动态过程,生物和生理反应在几分钟到几小时内演变。的目标
该建议是使用动态数据,特别是纵向生命体征来鉴定新的脓毒症亚表型。
在Aim 1中,Bhavani博士将把尖端的机器学习算法应用于纵向生命体征,
并验证新的生命轨迹亚表型。在目标2中,Bhavani博士将研究
这些subphenotypes。在目标3中,Bhavani博士将研究亚表型对一种最常见的
败血症的常见干预措施-静脉输液。鉴定对不同药物应答的亚表型
液体可以将脓毒症管理从一刀切的方法转变为精确的医学方法-
脓毒症亚表型的最终目的。通过K23的培训,Bhavani博士将为以下方面做好准备:
R 01水平的工作:a)通过结合动态临床和免疫学数据来细化亚表型,和B)
使用其他随机对照试验的数据研究亚表型对额外治疗的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sivasubramanium Bhavani其他文献
Sivasubramanium Bhavani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sivasubramanium Bhavani', 18)}}的其他基金
Identification of Precision Sepsis Subphenotypes Using Vital Sign Trajectories
使用生命体征轨迹精确识别脓毒症亚表型
- 批准号:
10683303 - 财政年份:2021
- 资助金额:
$ 17.79万 - 项目类别:
相似海外基金
Development of small molecule inhibitors as anti-inflammatory agents and antidotes for arsenicals
开发作为抗炎剂和砷解毒剂的小分子抑制剂
- 批准号:
10727507 - 财政年份:2023
- 资助金额:
$ 17.79万 - 项目类别:
Discovery of New Anti-Inflammatory Agents to Treat COPD
发现治疗慢性阻塞性肺病的新型抗炎药
- 批准号:
9194162 - 财政年份:2016
- 资助金额:
$ 17.79万 - 项目类别:
Synthesis of anti-inflammatory agents and their structure-activity relationships studies
抗炎药的合成及其构效关系研究
- 批准号:
496858-2016 - 财政年份:2016
- 资助金额:
$ 17.79万 - 项目类别:
University Undergraduate Student Research Awards
NAAA Inhibitors as Anti-inflammatory Agents, Phase II
NAAA 抑制剂作为抗炎剂,II 期
- 批准号:
9201955 - 财政年份:2015
- 资助金额:
$ 17.79万 - 项目类别:
Novel flavonoids as anti-inflammatory agents in alcoholism
新型黄酮类化合物作为酒精中毒的抗炎剂
- 批准号:
8251289 - 财政年份:2014
- 资助金额:
$ 17.79万 - 项目类别:
TLR-7 Agonists as Targeted Anti-inflammatory Agents in Arthritis
TLR-7 激动剂作为关节炎的靶向抗炎药
- 批准号:
8302750 - 财政年份:2012
- 资助金额:
$ 17.79万 - 项目类别:
Design and in vivo delivery of novel anti-inflammatory agents
新型抗炎剂的设计和体内递送
- 批准号:
267940 - 财政年份:2012
- 资助金额:
$ 17.79万 - 项目类别:
Operating Grants
Development of inlammasome inhibitors to be used as anti-inflammatory agents
开发用作抗炎剂的inlammasome抑制剂
- 批准号:
8403458 - 财政年份:2012
- 资助金额:
$ 17.79万 - 项目类别:
TLR-7 Agonists as Targeted Anti-inflammatory Agents in Arthritis
TLR-7 激动剂作为关节炎的靶向抗炎药
- 批准号:
8472443 - 财政年份:2012
- 资助金额:
$ 17.79万 - 项目类别:
Development of inlammasome inhibitors to be used as anti-inflammatory agents
开发用作抗炎剂的inlammasome抑制剂
- 批准号:
8549297 - 财政年份:2012
- 资助金额:
$ 17.79万 - 项目类别: