Ketone body metabolites in intestinal stem cell homeostasis and disease.
肠道干细胞稳态和疾病中的酮体代谢。
基本信息
- 批准号:10489276
- 负责人:
- 金额:$ 8.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-hydroxy-3-methylglutaryl-coenzyme AAcetoacetatesAcetyl Coenzyme AAgeCell divisionCellsCitric Acid CycleCoenzyme ACuesDataDietDiseaseEnvironmentEnzymesEpithelial CellsEquilibriumFastingFatty AcidsG-Protein-Coupled ReceptorsGeneticGenetic ModelsGenetic TranscriptionHealthHistone DeacetylaseHistone Deacetylase InhibitorHomeostasisHumanIn VitroInflammationInjuryIntestinesIsotope LabelingKetone BodiesKetonesKnockout MiceLabelLeucine-Rich RepeatLigaseLongevityMapsMediatingMetabolicMitochondriaModelingMusNatural regenerationNotch Signaling PathwayNutritionalOxidoreductasePathway interactionsPhysiologicalProcessProductionPublishingRoleSignal PathwaySignal TransductionTechniquesTechnologyTestingTherapeuticTissuesTransferaseage relatedagedbasebeta-Hydroxybutyrateexperimental studyfatty acid oxidationimprovedin vivoinhibitor therapyintestinal cryptintestinal epitheliumketogenticmetabolomicsmouse modelnoveloxidationoxidative damageprogramsrapid techniqueresponseresponse to injurystem cell functionstem cell homeostasisstem cellsstemnesssuccinyl-coenzyme Atissue injurytissue regeneration
项目摘要
Project Summary/Abstract
Diet has a profound impact on organismal health. Fasting improves human health in part by reducing
inflammation, decreasing oxidative damage and extending longevity, however, the mechanisms by which fasting
improves intestinal regeneration remains poorly understood. The intestinal epithelium renews fastidiously every
5-7 days via Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5+) expressing intestinal stem
cells (ISCs) found at the base of the intestinal crypt. LGR5+ ISCs balance differentiation and epithelial cell
divisions to influence tissue regeneration by integrating metabolic and signaling cues from their environment like
diet. Fasting has a profound effect on ISC function in young and aged mice and can improve the age-associated
decline in tissue regeneration through the induction of fatty acid oxidation (FAO), a process that oxidizes fatty
acids into acetyl-CoA units. In addition, LGR5+ ISCs strongly express 3-hydroxy-3-methylglutaryl-CoA
synthetase 2 (HMGCS2), the rate-limiting enzyme in the ketogenic pathway whereby acetyl-CoA units are
converted to ketone bodies such as beta-hydroxybutyrate (bOHB) and acetoacetate (AcAc). Mechanistically,
bOHB reinforces the NOTCH signaling pathway by inhibiting class I histone-deacetylases (HDACs) to instruct
ISC cell fate decisions. These findings further support a nuanced relationship between host nutritional state and
stem cell function whereby dynamic control of ISC bOHB levels enable their rapid adaptation to diverse
physiological states such as fasting. Other roles for ISC-derived ketone body metabolites have yet to be
elucidated and, as such, we propose that bOHB and AcAc function as distinct signaling metabolites regulating
ISC fasting responses (Aim 1) and have unique roles as energetic substrates (Aim 2). To test this hypothesis,
we will use key genetic mouse models to understand how perturbed bOHB/AcAc ratios alter intestinal stem cell
function in vivo and in vitro (Aim 1), as well as labelled substrate administration and novel techniques for rapid
mitochondrial isolation to determine key ISC metabolic adaptations to fasting (Aim 2). Taken together, the
experiments proposed will mechanistically delineate the signaling and energetic roles of ketone body metabolites
on intestinal stemness and improve our understanding of how the fasting response via ketone bodies influences
intestinal regeneration. We expect this approach will identify therapeutic options exploiting ketone bodies and
the signaling and energetic pathways engaged by them to enhance intestinal regeneration in cases of injury and
age-related decline of stem cell function.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Elizabeth Stewart Shay其他文献
Jessica Elizabeth Stewart Shay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Elizabeth Stewart Shay', 18)}}的其他基金
Ketone body metabolites in intestinal stem cell homeostasis and disease.
肠道干细胞稳态和疾病中的酮体代谢。
- 批准号:
10313437 - 财政年份:2022
- 资助金额:
$ 8.08万 - 项目类别:
Hypoxia and HIF in Tumor-Associated Macrophage Driven Tumor Progression
肿瘤相关巨噬细胞驱动的肿瘤进展中的缺氧和 HIF
- 批准号:
8458189 - 财政年份:2012
- 资助金额:
$ 8.08万 - 项目类别:
Hypoxia and HIF in Tumor-Associated Macrophage Driven Tumor Progression
肿瘤相关巨噬细胞驱动的肿瘤进展中的缺氧和 HIF
- 批准号:
8312983 - 财政年份:2012
- 资助金额:
$ 8.08万 - 项目类别:














{{item.name}}会员




