Development of a low cost, label-free, and highly sensitive optical cavity-based biosensor for point-of-care diagnostics
开发用于即时诊断的低成本、无标记且高灵敏度的基于光学腔的生物传感器
基本信息
- 批准号:10439062
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityAreaAttentionBiosensing TechniquesBiosensorC-reactive proteinCOVID-19 outbreakCardiovascular DiseasesCharacteristicsCommunicable DiseasesComplexConsumptionDepositionDetectionDevelopmentDiagnosisDifferential EquationDiseaseDoctor of PhilosophyEarly DiagnosisEnvironmentEquationEquipmentGoalsGrantHealthHuman ResourcesImmobilizationInterferometryKnowledgeLabelLaboratoriesLasersLiquid substanceMalignant NeoplasmsMedicalMethodsModelingMonitorOpticsOutputPatientsPersonsPhaseProceduresProcessRecoveryResearchResearch PersonnelResearch Project GrantsSamplingSilanesSilicon DioxideSilverSpecificityStructureSupervisionSurfaceSurface Plasmon ResonanceSurvival RateSystemTestingThickTimeTrainingTreatment CostUniversitiesWorkbasecomputerized data processingcostdetection limitdetection methoddiagnostic technologieseconomic impactfight againstgraduate studentimprovedinnovationoperationpoint of carepoint-of-care diagnosticsportabilityresponsestudent mentoringtoolundergraduate studentvapor
项目摘要
Project Summary
Each year, millions of people around the world suffer and die from diseases such as cancers, infectious diseases,
and cardiovascular diseases. Early detection and the ability to closely monitor the status of the disease are
critical for medical professionals seeking to help diseased patients. The early detection of diseases not only
helps patients to receive proper treatment and increases the chance of full recovery but also is important to
reduce the economic impact due to treatment costs and output losses. The importance of early detection has
been widely recognized recently as we fight against the current global outbreak of coronavirus disease 19
(COVID-19). Point-of-care (POC) biosensors could allow patients to regularly check their health condition at the
bedside or near them without being dependent on the central laboratory testing. Effective POC biosensors would
be low cost and would have label-free operation, high sensitivity, high specificity, multiplexability (i.e., ability to
detect multiple analytes in a sample fluid simultaneously), a short turnaround time, and quantitative detection.
However, current diagnostic technologies are not suitable to be used as POC biosensors and the various optical
biosensors developed still have drawbacks for POC use.
The long-term goal of the PI is to develop a POC biosensor with all the required characteristics. To
achieve this goal, the PI and his team have developed an Optical Cavity-based Biosensor (OCB) with a
differential detection method. An optical resonator structure is inherently attractive for the biosensing application
due to its label-free operation and resonant characteristics. The innovative aspect of our OCB is the use of low-
cost components with enhanced sensitivity by employing a differential detection method. Recently, we were able
to successfully demonstrate low-cost, label-free, and portable characteristics of the OCB. The limit of detection
(LOD) we were able to achieve was 377 picomolar (pM) for the C-reactive protein (CRP) molecules. The main
goal of this proposal is to improve the LOD of the OCB. We will investigate three different strategies for improving
the LOD in our OCB. The proposed research could have substantial significance in the medical diagnosis field,
it will strengthen the research environment of Baylor University, and it will provide opportunities for
undergraduate students to be involved in the research project. In Aim 1, we will attempt to improve the LOD by
using an improved optical cavity structure and equation used for the differential detection method. In Aim 2, we
will investigate different silanization processes using vapor-phase and solution-phase deposition of 3-
aminopropyltriethoxysilane (APTES). Finally, in Aim 3, we will develop proper dispensing and incubation
processes for a picoliter fluid dispenser to create a smaller sensing area and investigate the LODs of the OCB
with various sensing areas. In the end, we anticipate achieving the LOD of the OCB in the femtomolar (fM) range
which is comparable to that of the state-of-the-art biosensors.
项目摘要
每年,全世界有数百万人遭受癌症、传染病、
和心血管疾病。早期发现和密切监测疾病状况的能力是
对于寻求帮助患病患者的医疗专业人员来说至关重要。疾病的早期发现不仅
帮助患者接受适当的治疗,增加完全康复的机会,但也很重要,
减少由于处理成本和产出损失而造成的经济影响。早期发现的重要性
最近,在我们抗击当前全球爆发的冠状病毒疾病时,
(2019冠状病毒病)。即时护理(POC)生物传感器可以让患者定期检查他们的健康状况,
床边或附近,而不依赖于中心实验室检测。有效的POC生物传感器将
成本低并且具有无标记操作、高灵敏度、高特异性、多重性(即,能力
同时检测样品流体中的多种分析物)、短周转时间和定量检测。
然而,目前的诊断技术不适合用作POC生物传感器和各种光学传感器。
所开发的生物传感器对于POC的使用仍然具有缺点。
PI的长期目标是开发具有所有所需特性的POC生物传感器。到
为了实现这一目标,PI和他的团队开发了一种基于光腔的生物传感器(OCB),
差分检测法光学谐振器结构对于生物传感应用具有固有的吸引力
这是由于其无标记操作和谐振特性。OCB的创新之处在于使用低-
通过采用差分检测方法提高了灵敏度。最近,我们能够
以成功展示OCB的低成本、无标签和便携特性。检测限
(LOD)我们能够达到的C-反应蛋白(CRP)分子的浓度为377皮摩尔(pM)。主要
本提案的目的是提高OCB的LOD。我们将研究三种不同的策略,
OCB中的LOD。这项研究在医学诊断领域具有重要意义,
它将加强贝勒大学的研究环境,并将为以下方面提供机会:
本科生参与研究项目。在目标1中,我们将尝试通过以下方式改进LOD:
使用改进的光学腔结构和用于差分检测方法的方程。在目标2中,
将研究不同的硅烷化过程中使用气相和溶液相沉积的3-
氨基丙基三乙氧基硅烷(APTES)。最后,在目标3中,我们将开发适当的分配和孵化
皮升流体分配器的过程,以创建更小的感测区域并研究OCB的LOD
具有各种传感区域。最后,我们预计OCB的LOD将达到飞摩尔(fM)范围
这与现有技术的生物传感器的水平相当。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seunghyun Kim其他文献
Seunghyun Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant