Statistical methods for cancer progression delineation and subtype identification
癌症进展描述和亚型识别的统计方法
基本信息
- 批准号:10368994
- 负责人:
- 金额:$ 7.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adenocarcinoma CellAdvocateAffectAlgorithmsAppalachian RegionBasic ScienceBiologicalCancer ClusterCancer PatientCellsClinicalClinical ResearchColon CarcinomaComplexComputing MethodologiesDNA sequencingDataDevelopmentDiseaseFutureGenesGenomicsHigh-Throughput DNA SequencingKnowledgeLung AdenocarcinomaMAP Kinase GeneMalignant NeoplasmsMalignant neoplasm of lungMethodsModelingMolecularMutationOutcomePathway interactionsPatientsPhylogenetic AnalysisPopulationProcessPrognosisPublicationsResearchResolutionSample SizeSomatic MutationSquamous cell carcinomaStatistical MethodsStructureThe Cancer Genome AtlasTransforming Growth Factor betaTreesWNT Signaling Pathwayanticancer researchbasecancer classificationcancer subtypescancer typecarcinogenesisclinical practicecohortdesigndrug developmentgenomic dataimprovedindividual patientinsightmachine learning modelmolecular subtypesnew therapeutic targetp53 Signaling Pathwaypersonalized medicinesingle cell sequencingstatistical and machine learningsuccesstooltreatment responsetreatment strategytumortumor heterogeneitytumor progressiontumorigenesis
项目摘要
Project Summary
Carcinogenesis is a complex process involving somatic mutations in a number of key biological pathways
and processes. Full study of the temporal order of somatic mutation occurrences is very important to
understand biological mechanisms of cancer development and to inform new therapeutic targets and treatment
options. The first and most recognized example of order of mutations is from colon cancer, which is frequently
initiated by mutations that affect the Wnt signaling pathway, and then progress upon subsequent mutations in
genes involved in MAPK, PI3K, TGF-beta, and p53 signaling pathways. However, for many other cancer types,
temporal orders of mutations are still largely unknown. Somatic mutation profiling via high throughput DNA
sequencing has provided an unprecedented opportunity for using statistical/computational methods to study
cancer progression. We and others have developed methods to infer temporal order of somatic mutations
based on combining mutation profile data from a cohort of patients. However, one major limitation of current
methods is that they only consider presence or absence of mutations in a patient’s tumor, but do not take into
account intra-tumoral heterogeneity (ITH). The ITH refers to the presence of multiple cell populations, i.e.
subclones, with distinct mutation profiles within a patient’s tumor. The ITH, which can be inferred from either
single-/multi-region bulk sequencing or single cell sequencing, is usually characterized by a phylogenetic tree
with nodes in the tree indicating different subclones and edges indicating the evolutionary relationships of
subclones. As a phylogenetic tree describes the temporal order of mutations within an individual patient’s
tumor, incorporating such in-depth intra-patient information into the tumor progression analysis across patients
is likely to substantially increase the power and accuracy of the analysis. Another important priority in cancer
research is to identify molecular subtypes. As cancer is a complex disease, patients of the same cancer type
may have very different prognoses and responses to therapy. Further classifying patients into subtypes allows
clinicians to better predict a patient’s clinical outcomes and design more personalized treatment strategies. By
harnessing omics profiling data, statistical/machine learning has emerged as a powerful tool to identify
molecular cancer subtypes. However, due to the high complexity of cancer omics data and limited sample size,
it is still challenging to obtain stable and biologically interpretable results. Recently, it has been advocated that
incorporating biological knowledge and structure into the construction of statistical/machine learning models is
a viable approach to improve the mechanistic interpretability and robustness of the models. To advance
current capabilities, we propose to develop new statistical methods to better estimate the temporal order of
pathway mutations by integrating ITH, pathway and mutational functional annotation information, and thereby,
to classify patients into biologically meaningful subtypes.
项目摘要
癌变是一个复杂的过程,涉及许多关键生物学途径的体细胞突变
和过程。全面研究体细胞突变发生的时间顺序对于
了解癌症发展的生物学机制,并为新的治疗靶点和治疗提供信息
选项.第一个也是最公认的突变顺序的例子来自结肠癌,结肠癌通常是
由影响Wnt信号通路的突变启动,然后在随后的突变中进展。
参与MAPK、PI 3 K、TGF-β和p53信号通路的基因。然而,对于许多其他癌症类型,
突变的时间顺序在很大程度上仍然是未知的。通过高通量DNA进行体细胞突变分析
测序为使用统计/计算方法来研究提供了前所未有的机会
癌症进展我们和其他人已经开发出推断体细胞突变时间顺序的方法
基于组合来自一组患者的突变谱数据。然而,目前的一个主要限制是,
方法的一个重要特点是,他们只考虑患者肿瘤中突变的存在或不存在,而不考虑
考虑肿瘤内异质性(ITH)。ITH是指存在多个细胞群体,即
亚克隆,在患者的肿瘤内具有不同的突变谱。ITH,可以从以下两种情况中推断出来:
单/多区域批量测序或单细胞测序通常以系统发生树为特征
树中的节点表示不同的亚克隆,边表示
亚克隆系统发生树描述了个体患者的基因组中突变的时间顺序,
肿瘤,将这种深入的患者内信息纳入患者间的肿瘤进展分析
很可能会大大提高分析的能力和准确性。癌症治疗的另一个重点
研究的目的是确定分子亚型。由于癌症是一种复杂的疾病,
可能会有非常不同的症状和对治疗的反应进一步将患者分类为亚型,
临床医生可以更好地预测患者的临床结果,并设计更个性化的治疗策略。通过
利用组学分析数据,统计/机器学习已经成为一种强大的工具,
分子癌症亚型。然而,由于癌症组学数据的高度复杂性和有限的样本量,
获得稳定的和生物学上可解释的结果仍然具有挑战性。最近,有人主张,
将生物学知识和结构纳入统计/机器学习模型的构建中,
一个可行的方法,以提高机械的可解释性和鲁棒性的模型。推进
目前的能力,我们建议开发新的统计方法,以更好地估计时间顺序
通过整合ITH、途径和突变功能注释信息,
把病人分成有生物学意义的亚型
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chi Wang其他文献
Chi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chi Wang', 18)}}的其他基金
Statistical methods for cancer progression delineation and subtype identification
癌症进展描述和亚型识别的统计方法
- 批准号:
10201322 - 财政年份:2021
- 资助金额:
$ 7.49万 - 项目类别:
相似海外基金
Optimizing Health and Well-Being of Diverse Mothers with IDD and Their Infants During the Perinatal Period: A Virtual Advocate Tool for Data-Driven Supports
优化患有 IDD 的不同母亲及其婴儿在围产期的健康和福祉:用于数据驱动支持的虚拟倡导工具
- 批准号:
10760051 - 财政年份:2023
- 资助金额:
$ 7.49万 - 项目类别:
POSE: Phase II: Advocate Led Long-term Gameplan for Open OnDemand (ALL GOOD)
POSE:第二阶段:倡导者主导 Open OnDemand 的长期游戏计划(一切顺利)
- 批准号:
2303692 - 财政年份:2023
- 资助金额:
$ 7.49万 - 项目类别:
Standard Grant
Capitalising on our differences: A gathering to better understand and advocate for Early Career Health Researchers in Canada
利用我们的差异:更好地理解和倡导加拿大早期职业健康研究人员的聚会
- 批准号:
468168 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
Miscellaneous Programs
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
- 批准号:
10427960 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
Evaluating an ACEs-Targeting Advocate Model of a Substance Use Prevention Program
评估药物使用预防计划的针对 ACE 的倡导者模型
- 批准号:
10577074 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
The Art of Creation: Using Art-Based Knowledge Translation to Promote and Advocate for a Healthy Start to Life
创造的艺术:利用基于艺术的知识转化来促进和倡导健康的生命开端
- 批准号:
486588 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
Studentship Programs
When I am Old, I shall Wear Purple Nail Varnish: Utilising performance art to construct queer spaces that celebrate and advocate for ageing bodies
当我老了,我要涂紫色指甲油:利用行为艺术构建酷儿空间,庆祝和倡导衰老的身体
- 批准号:
2760091 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
Studentship
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
- 批准号:
10621188 - 财政年份:2022
- 资助金额:
$ 7.49万 - 项目类别:
Techquity by FAITH!: A cluster randomized controlled trial to assess the efficacy of a community-informed, cardiovascular health promotion mobile hlth intervention with digital health advocate support
Techquity by FAITH!:一项整群随机对照试验,旨在评估社区知情、心血管健康促进移动 hlth 干预措施在数字健康倡导者支持下的效果
- 批准号:
10891016 - 财政年份:2021
- 资助金额:
$ 7.49万 - 项目类别:
CMV responses in autoantibody positive subjects advocate antiviral treatments for prevention of T1D
自身抗体阳性受试者的 CMV 反应主张抗病毒治疗以预防 T1D
- 批准号:
10230365 - 财政年份:2020
- 资助金额:
$ 7.49万 - 项目类别:














{{item.name}}会员




