A prediction algorithm for optimal number of oocytes to fertilize during in vitro fertilization treatment
体外受精治疗期间最佳受精卵母细胞数量的预测算法
基本信息
- 批准号:10369687
- 负责人:
- 金额:$ 6.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-15 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAssisted Reproductive TechnologyCaringCenters for Disease Control and Prevention (U.S.)CharacteristicsChildClinicClinicalContraceptive methodsCouplesCryopreservationDataDatabase Management SystemsDetectionEffectivenessEmbryoEmbryo TransferEmotionalEthicsFertilityFertilization in VitroFutureGoalsGynecologicInfertilityIntentionLeadLive BirthLogisticsMethodsModelingNational Institute of Child Health and Human DevelopmentOocytesOutcomePatient CarePatientsPreventionProbabilityProceduresProviderPublic HealthReportingReproductive HealthResearchResearch PriorityRetrievalSocietiesStrategic PlanningSurveysTechnologyTimeUnited Statesbasedemographicseggembryo cryopreservationembryo qualityfertility preservationimprovedinnovationinterestprediction algorithmresponsesocialtoolzygote
项目摘要
Project Summary/Abstract
In vitro fertilization (IVF) treatment has become increasingly more common and
successful over the last decade. Extra frozen embryos (embryos that couples do not
use right away, but continue to store) pose an emotional and financial dilemma to
patients. The extra embryos also lead to a logistical and financial dilemma for clinics.
One strategy to limit the number of extra embryos in storage is to limit the number of
embryos created in the first place. However, there currently is no validated method to
determine how many eggs should be fertilized during in vitro fertilization treatment such
that enough embryos are formed to have the desired number of children while
minimizing the number of extra embryos.
Our objective is to develop a prediction tool to aid clinicians and patients in deciding
how many eggs should be fertilized during IVF. In Specific Aim 1, we will develop an
algorithm using existing data from the national Society for Assisted Reproductive
Technology Clinical Outcome Reporting System (SART CORS) database. We propose
to develop two separate models, one to predict the number of embryos that will need to
be transferred to yield one live birth and the second to predict the proportion of fertilized
eggs that will yield transferrable embryos. Both models will consider patient
demographics and pre-retrieval cycle characteristics as possible predictors. The final
algorithm will involve a function of the ratio of the two predictions. In Specific Aim 2, we
will survey IVF patients and providers to assess their interest and perspective in utilizing
the prediction tool. Survey responses will help elucidate possible barriers to utilization,
informing us on how best to educate patients and providers on the value of the
prediction tool. This proposal is of high importance because it has the potential to
change the way IVF is conducted, thus limiting the number of eggs that are fertilized
and creating less embryos. Having less embryos will minimize the emotional, financial,
and logistical tolls that extra embryos pose to patients and providers. With successful
completion of the proposed aims, we will have a tool that can help promote safer,
effective, more responsible care for IVF patients.
项目总结/文摘
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of a Model to Estimate the Optimal Number of Oocytes to Attempt to Fertilize During Assisted Reproductive Technology Treatment.
- DOI:10.1001/jamanetworkopen.2022.49395
- 发表时间:2023-01-03
- 期刊:
- 影响因子:13.8
- 作者:Correia, Katharine F. B.;Missmer, Stacey A.;Weinerman, Rachel;Ginsburg, Elizabeth S.;Rossi, Brooke V.
- 通讯作者:Rossi, Brooke V.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katharine Fischer Berry Correia其他文献
Katharine Fischer Berry Correia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katharine Fischer Berry Correia', 18)}}的其他基金
A prediction algorithm for optimal number of oocytes to fertilize during in vitro fertilization treatment
体外受精治疗期间最佳受精卵母细胞数量的预测算法
- 批准号:
10218608 - 财政年份:2021
- 资助金额:
$ 6.56万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 6.56万 - 项目类别:
Continuing Grant