Investigating the molecular mechanisms of asymmetric histone incorporation during DNA replication
研究 DNA 复制过程中不对称组蛋白掺入的分子机制
基本信息
- 批准号:10456597
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiochemicalBiological AssayBiologyCell Cycle ProgressionCell Differentiation processCell LineageCell divisionCellsChromatinChromatin FiberClustered Regularly Interspaced Short Palindromic RepeatsCoupledDNADNA biosynthesisDNA replication forkDNA-Directed DNA PolymeraseDepositionDevelopmentDrosophila genusEpigenetic ProcessEventGene ExpressionGeneticGenomeGenomic SegmentGenomic approachGerm CellsHistonesHomeostasisImageInheritance PatternsInheritedKnock-inLevel of EvidenceLightMeasuresMediatingMethodsMitosisMitoticModelingMolecularNucleosomesOrganismPathway interactionsPatternPlayPolymerasePositioning AttributeProcessProteinsRecyclingReplication-Associated ProcessReportingResolutionRoleSeriesSisterSister ChromatidSpecific qualifier valueStainsTestingTimeTissuesadult stem cellbasecell fate specificationcell typedaughter cellepigenomeexperimental studygermline stem cellshistone modificationimprovedmalenovelnucleoside analogoverexpressionsegregationself-renewalsingle moleculesmall moleculespatiotemporalstem cell biologystem cells
项目摘要
Asymmetrically dividing adult stem cells, which divide to create both a self-renewing stem cell and a differentiating
daughter cell, play a crucial role in maintaining tissue homeostasis in multicellular organisms. It is well understood in
most cell types that epigenetic mechanisms regulate gene expression and thereby govern cell fate. Yet, it largely remains a
mystery how the two daughter cells generated during the asymmetric division of adult stem cells go on to acquire different
epigenomes. The lab previously discovered that histones, key carriers of epigenetic information, are segregated
asymmetrically during the asymmetric division of male Drosophila Germline Stem Cells (GSC). In this process old
histones are retained in the GSC while the differentiating cell inherits newly synthesized histones, suggesting that this
pathway could maintain epigenetic information in the GSC while priming the differentiating daughter cell to acquire new
epigenetic information during differentiation. Recently, we found that this process is mechanistically underlied by a two-
step process in which histones are first asymmetrically deposited on sister chromatids during DNA replication before
being differentially recognized and segregated during mitosis. During replication this asymmetry is primarily achieved by
incorporating old histones on the leading strand while the lagging strand later incorporates new histones. The finding that
asymmetric histone inheritance is driven by DNA replication opens the exciting possibility that DNA replication plays
unappreciated roles in patterning cell fate. However, the precise molecular mechanism by which histones are
asymmetrically incorporated on sister chromatids remains unclear.
Here I propose that the asymmetry in histone incorporation during replication in GSCs is driven by enhancing the inherent
asymmetry of DNA replication. I have found preliminary evidence that protein levels of RPA and lagging strand
polymerases DNA Polα and DNA Polδ may drive the asymmetry in this process. I propose testing further manipulating
the levels of these proteins using a series of approaches to alter the levels of these proteins using genetic and biochemical
approaches. I plan to read out the effects of these manipulations using superresolution imaging of chromatin fibers to gain
single molecule resolution of replication coupled nucleosome assembly. Further, I propose the novel hypothesis that the
altered levels of these proteins may drive the histone inheritance asymmetry by decoupling lagging strand synthesis from
replication fork progression. To explicitly test this model I plan to couple chromatin fibers with biochemical
manipulations of cell cycle progression to directly measure replication timing after fork progression for the leading and
lagging strand. Finally, using a sequencing-based approach I will assay whether histone incorporation also displays local
differences throughout the genome. The results of this study stand to dramatically improve our understanding not only of
DNA replication and epigenetics but could also provide a whole new framework to think about stem cell biology and cell
fate specification.
不对称分裂的成体干细胞,其分裂以产生自我更新干细胞和分化干细胞。
在多细胞生物体中,子细胞在维持组织稳态中起着至关重要的作用。很好理解的
大多数细胞类型的表观遗传机制调节基因表达,从而控制细胞的命运。然而,它在很大程度上仍然是一个
在成体干细胞的不对称分裂过程中产生的两个子细胞如何继续获得不同的
表观基因组该实验室先前发现,组蛋白是表观遗传信息的关键载体,
在雄性果蝇生殖系干细胞(GSC)的不对称分裂过程中,在这个过程中,老
组蛋白保留在GSC中,而分化细胞继承了新合成的组蛋白,这表明
通路可以维持GSC中的表观遗传信息,同时引发分化的子细胞获得新的
分化过程中的表观遗传信息。最近,我们发现这一过程的机制是由两个-
在DNA复制过程中,组蛋白首先不对称地沉积在姐妹染色单体上,
在有丝分裂期间被区别识别和分离。在复制过程中,这种不对称性主要通过以下方式实现:
在前导链上掺入旧的组蛋白,而滞后链随后掺入新的组蛋白。的发现
不对称组蛋白遗传是由DNA复制驱动的,这开启了DNA复制发挥作用的令人兴奋的可能性。
未被重视的作用。然而,组蛋白在细胞中的精确分子机制
姐妹染色单体上的不对称掺入仍不清楚。
在这里,我提出,在GSC复制过程中,组蛋白掺入的不对称性是由增强固有的
DNA复制的不对称我发现了初步证据表明RPA和滞后链的蛋白质水平
聚合酶DNA Polα和DNA Polδ可能驱动该过程中的不对称性。我建议进一步测试
使用一系列方法来改变这些蛋白质的水平,利用遗传和生物化学来改变这些蛋白质的水平
接近。我计划使用染色质纤维的超分辨率成像来读出这些操作的效果,
复制偶联核小体组装的单分子分辨率。此外,我提出了一个新的假设,
这些蛋白质水平的改变可能通过将滞后链合成与组蛋白遗传不对称性分离而驱动组蛋白遗传不对称。
复制叉进展。为了明确地测试这个模型,我计划将染色质纤维与生物化学物质结合起来,
操纵细胞周期进程,以直接测量前叉进程后的复制时间,
落后股最后,使用基于测序的方法,我将分析组蛋白掺入是否也显示局部的
基因组中的差异。这项研究的结果不仅大大提高了我们对
DNA复制和表观遗传学,但也可以提供一个全新的框架来思考干细胞生物学和细胞
命运规格
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Snedeker其他文献
Jonathan Snedeker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Snedeker', 18)}}的其他基金
Investigating the molecular mechanisms of asymmetric histone incorporation during DNA replication
研究 DNA 复制过程中不对称组蛋白掺入的分子机制
- 批准号:
10314925 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 2.04万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
- 批准号:
2334134 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant