Recombination rate variation and evolution

重组率变化和演变

基本信息

项目摘要

Abstract Meiotic recombination is necessary for the proper segregation of chromosomes during meiosis, and in creating genetic diversity in populations through the shuffling of alleles. Changes in the number of recombination events, or recombination rate, can thus have impacts on individual organismal health via meiotic failure, and on population fitness by influencing the efficacy of selection. And yet, variation in recombination rate has been documented across the genome, and among populations and species. Despite progress in cataloguing recombination rate variation, how and why recombination rate changes remains largely unknown. The goal of my research program is to investigate the genetic and environmental causes of recombination rate variation, and the consequences of recombination rate variation on genome evolution. Over the next five years, my lab will use experimental evolution and genomics in Saccharomyces yeast to explore three main questions. First, how does the recombination landscape change over short time scales? We are using whole genome sequencing to construct genome wide recombination rates in multiple populations of Saccharomyces uvarum. We seek to identify how the double strand breaks that initiate recombination are repaired as crossover or non-crossover gene conversion events, and how these two types of events are conserved or divergent between populations. This will be the first study to examine evolution in both types of recombination events in multiple populations, offering an unprecedented view of the mechanism underlying recombination rate variation. Second, we are investigating how adaptation to a new environment alters recombination rate. Recombination rate plasticity has been linked to changes in temperature and other environmental factors for many years, but explicit tests of environmental adaptation influencing recombination rate evolution (or vice versa) are missing. We will evolve cold tolerant S. uvarum populations in the lab for increased thermotolerance, and use whole genome sequencing to identify any shifts in recombination rate or the distribution of crossover and non-crossover gene conversion events that occur as a result of adaptation to temperature. Finally, we’re exploring how recombination rate influences the distribution and persistence of introgression in the genome following hybridization. We are evolving admixed strains from 2 diverging populations of S. uvarum with partial reproductive isolation to test the hypothesis that introgression is reduced in regions of low recombination due to selection against weak, negative epistatic interactions. We’ll compare the distribution of introgression in evolved populations to recombination maps to better understand what forces shape genomes in the generations after hybridization. Overall, my research will leverage the benefits of working with the tractable Saccharomyces system to empirically test longstanding hypotheses of how and why recombination changes over time.
摘要 减数分裂重组对于减数分裂过程中染色体的适当分离和创造是必要的。 通过等位基因的洗牌来实现种群中的遗传多样性。重组事件数量的变化, 或重组率,因此可以通过减数分裂失败对个体器官健康产生影响,并在 种群适合度通过影响选择的效果来实现。然而,重组率的变化一直是 在整个基因组以及种群和物种之间都有记录。尽管在编目方面取得了进展 重组率的变化,如何以及为什么重组率变化在很大程度上仍然是未知的。的目标是 我的研究计划是调查重组率变异的遗传和环境原因,以及 重组率变异对基因组进化的影响。在未来五年里,我的实验室将使用 酵母菌的实验进化和基因组学探索三个主要问题。首先,如何 重组景观在短时间尺度上的变化?我们正在使用全基因组测序来 构建uvarum酵母多种群全基因组重组率。我们寻求 确定启动重组的双链断裂是如何作为交叉或非交叉修复的 基因转换事件,以及这两种类型的事件是如何在种群之间保守或分化的。 这将是第一次研究在多个种群中这两种重组事件的进化, 为重组率变化的机制提供了前所未有的视角。第二,我们是 研究适应新环境如何改变重组率。复合率塑性 多年来一直与温度和其他环境因素的变化有关,但明确的测试 影响重组率进化的环境适应(反之亦然)缺失。我们将不断进化 实验室中耐寒沙门氏菌种群的耐热性提高,并使用全基因组测序 识别重组率的任何变化或交叉和非交叉基因转化的分布 由于适应温度而发生的事件。最后,我们正在探索重组率如何 影响杂交后渗入在基因组中的分布和持久性。我们 是来自两个部分生殖隔离的不同种群的进化混合菌株来测试 一种假说认为,由于对弱者的选择,在低重组的区域减少了渗入, 负上位性相互作用。我们会将进化种群中的渐渗分布与 重组图更好地理解了是什么力量在杂交后的几代人中塑造了基因组。 总体而言,我的研究将利用使用易驯化的酵母系统的好处来经验性地 测试关于重组如何以及为什么会随着时间的推移而变化的长期假设。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Caitlin Suzanne Smukowski Heil其他文献

Caitlin Suzanne Smukowski Heil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Caitlin Suzanne Smukowski Heil', 18)}}的其他基金

Recombination rate variation and evolution
重组率变化和演变
  • 批准号:
    10275696
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
Recombination rate variation and evolution
重组率变化和演变
  • 批准号:
    10618339
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:

相似海外基金

Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
  • 批准号:
    10887038
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
  • 批准号:
    10877239
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
  • 批准号:
    MR/X007979/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grant
Cell competition, aneuploidy, and aging
细胞竞争、非整倍性和衰老
  • 批准号:
    10648670
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
  • 批准号:
    10735074
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
  • 批准号:
    10538074
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
  • 批准号:
    10537275
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
  • 批准号:
    10661533
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
  • 批准号:
    10366610
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
  • 批准号:
    10467260
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了