Structure and Mechanism of the SET1/COMPASS H3K4 Methyltransferase Complex
SET1/COMPASS H3K4 甲基转移酶复合物的结构和机制
基本信息
- 批准号:10456215
- 负责人:
- 金额:$ 37.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-08 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:ASH2L geneActive SitesAddressAnimalsBindingBiochemicalBiologicalBiological AssayBiological ModelsBiologyCellsChemicalsChromatin StructureComplexCongenital Heart DefectsCryoelectron MicroscopyCrystallizationDataDefectDiseaseElementsEnhancersEnzyme KineticsEnzymesEpigenetic ProcessEtiologyEukaryotaEukaryotic CellFamilyFamily memberGene ExpressionGene Expression RegulationGenesGeneticGenetic TranscriptionHRX proteinHealthHistone H3Histone-Lysine N-MethyltransferaseHistonesHumanIn VitroIntellectual functioning disabilityLightLinkLysineMLL geneMLL2 geneMalignant NeoplasmsMammalsMeasuresMental disordersMethodsMethylationMethyltransferaseMixed-Lineage LeukemiaMolecularMonoubiquitinationMotionMutationNamesNucleosomesOrthologous GeneOutcomePost-Translational Protein ProcessingProtein SubunitsRecombinantsRegulationReportingResidual stateRoleSaccharomyces cerevisiaeSchizophreniaSideSignal TransductionSpecificityStructureStructure-Activity RelationshipTestingTranscriptional ActivationTranscriptional RegulationWorkYeast Model SystemYeastsautism spectrum disorderbaseclinically relevantcongenital heart disorderenzyme substrateepigenetic regulationhistone methylationhuman diseasein vivointerestleukemiamembermethyl groupnervous system disorderneuropsychiatric disordernovelparalogous geneprotein complexprototypereconstitutionresponse
项目摘要
Project Summary
The post-translational modification of histone H3 lysine 4 (H3K4) by methyl groups is an evolutionarily conserved
epigenetic mark that is generally associated with transcription activation in all eukaryotic cells. Early studies of
the yeast model system, S. cerevisiae, have not only identified the prototype of the SET1/MLL family of
methyltransferases as the enzyme responsible for H3K4 mono-, di-, and trimethylation, but also revealed a yeast
Set1-centric protein complex, known as COMPASS, that stabilizes and confers catalytic activity to the enzyme.
The SET1/MLL family of H3K4 methyltransferases has undergone a significant expansion in animals. Mammals
have evolved a total of six distinct and functionally non-redundant family members, each of which also functions
within a COMPASS or COMPASS-like complex. Remarkably, recent studies have shown that mutations or
dysregulation of the six human SET1/MLL methyltransferases are associated with a spectrum of mental
illnesses, including schizophrenia, autism, and intellectual disability disorders. Malfunctions of some of these
family members are further linked to other human diseases such as mixed lineage leukemia and congenital heart
disease. Despite their important biological roles and their high relevance to human health, a molecular and
mechanistic understanding of the SET1/MLL H3K4 methyltransferases is largely lacking due to the large sizes
of most SET1/MLL enzymes and the complexity associated with their assemblies and regulation. To date, most
structural and biochemical studies have been focused on single domains and small fragments of the yeast and
human SET1/MLL enzymes and COMPASS subunits. Many questions, such as how the SET1/MLL enzymes
bind and become regulated by four common catalytic module subunits, namely RBBP5/Swd1, WDR5/Swd3,
ASH2L/Bre2, and DPY30/Sdc1 (human/yeast ortholog), how the resulting complexes recognize H3K4 in the
context of nucleosome and differentially catalyze mono- vs. multi-H3K4 methylation, and how the activities of
COMPASS and COMPASS-like complexes are regulated by upstream signals such as H2B mono-ubiquitination
remain unclear. Using a combination of structural, chemical and biochemical approaches, as well as yeast cell-
based functional assays, we propose to dissect the structure and function relationship of the yeast Set1
COMPASS complex as a model system and extend this work to the clinically relevant human SET1/MLL
complexes. Our proposed studies hold the promise to establish the missing framework for understanding the
structural basis of the SET1/MLL H3K4 methyltransferase function and regulation in eukaryotic biology and
unmasking the molecular mechanisms of various human diseases associated with their malfunction.
项目摘要
组蛋白H3赖氨酸4(H3 K4)的甲基翻译后修饰是进化上保守的,
表观遗传标记,通常与所有真核细胞中的转录激活相关。的早期研究
酵母模型系统、S.酿酒酵母,不仅确定了SET 1/MLL家族的原型,
甲基转移酶作为负责H3 K4单-,二-和三甲基化的酶,但也揭示了酵母
一种以Set 1为中心的蛋白质复合物,称为COMPASS,稳定酶并赋予其催化活性。
H3 K4甲基转移酶的SET 1/MLL家族在动物中经历了显著的扩增。哺乳动物
已经进化出了总共六个不同的和功能上非冗余的家庭成员,每个成员也发挥作用,
在COMPASS或类似COMPASS的复合物中。值得注意的是,最近的研究表明,突变或
六种人类SET 1/MLL甲基转移酶的失调与一系列精神疾病相关。
疾病,包括精神分裂症,自闭症和智力障碍。其中一些故障
家庭成员还与其他人类疾病有关,例如混合谱系白血病和先天性心脏病
疾病尽管它们具有重要的生物学作用和它们与人类健康的高度相关性,
SET 1/MLL H3 K4甲基转移酶的机制的理解是很大程度上缺乏,由于大的尺寸
大多数SET 1/MLL酶及其组装和调控相关的复杂性。迄今为止,
结构和生物化学研究集中在酵母的单个结构域和小片段上,
人SET 1/MLL酶和COMPASS亚基。许多问题,例如SET 1/MLL酶如何
结合并受到四种常见催化模块亚基的调节,即RBBP 5/Swd 1,WDR 5/Swd 3,
ASH 2L/Bre 2和DPY 30/Sdc 1(人/酵母直系同源物),所得复合物如何识别H3 K4,
核小体和差异催化单与多H3 K4甲基化的背景下,以及如何活动,
COMPASS和COMPASS样复合物受上游信号如H2 B单泛素化的调节
仍然不清楚。使用结构,化学和生物化学方法的组合,以及酵母细胞-
基于功能分析,我们拟对酵母Set 1的结构和功能关系进行剖析
COMPASS复合物作为模型系统,并将这项工作扩展到临床相关的人SET 1/MLL
配合物我们提出的研究有希望建立一个缺失的框架来理解
真核生物学中SET 1/MLL H3 K4甲基转移酶功能和调节的结构基础,
揭示与其功能障碍相关的各种人类疾病的分子机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Champak Chatterjee其他文献
Champak Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Champak Chatterjee', 18)}}的其他基金
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 37.89万 - 项目类别:
Structure and Mechanism of the SET1/COMPASS H3K4 Methyltransferase Complex
SET1/COMPASS H3K4 甲基转移酶复合物的结构和机制
- 批准号:
10667557 - 财政年份:2020
- 资助金额:
$ 37.89万 - 项目类别:
Structure and Mechanism of the SET1/COMPASS H3K4 Methyltransferase Complex
SET1/COMPASS H3K4 甲基转移酶复合物的结构和机制
- 批准号:
10256766 - 财政年份:2020
- 资助金额:
$ 37.89万 - 项目类别:
Structure and Mechanism of the SET1/COMPASS H3K4 Methyltransferase Complex
SET1/COMPASS H3K4 甲基转移酶复合物的结构和机制
- 批准号:
10047581 - 财政年份:2020
- 资助金额:
$ 37.89万 - 项目类别:
Chemical Strategies to Investigate Gene Regulation by Histone SUMOylation
研究组蛋白 SUMO 化基因调控的化学策略
- 批准号:
8673471 - 财政年份:2014
- 资助金额:
$ 37.89万 - 项目类别:
Chemical Strategies to Investigate Gene Regulation by Histone SUMOylation
研究组蛋白 SUMO 化基因调控的化学策略
- 批准号:
9548772 - 财政年份:2014
- 资助金额:
$ 37.89万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 37.89万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 37.89万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 37.89万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 37.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 37.89万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 37.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 37.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 37.89万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 37.89万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 37.89万 - 项目类别:
Discovery Grants Program - Individual