Random Matrix Theory-Based Noise Removal in MRI
MRI 中基于随机矩阵理论的噪声消除
基本信息
- 批准号:10456777
- 负责人:
- 金额:$ 64.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-16 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyBody SurfaceBody TemperatureBrainBrain MappingBrain NeoplasmsCell NucleusClinicalDataDeep Brain StimulationDeteriorationDevelopmentDiagnosisDiagnosticDiagnostic ImagingDiffusion Magnetic Resonance ImagingEssential TremorExcisionFeedbackFloorFocused UltrasoundFunctional Magnetic Resonance ImagingGeometryGoalsImageJointsLanguageLengthLesionMagnetic Resonance ImagingMapsMeasurementMedialMethodsModelingMonitorMorphologic artifactsMotionNoiseNuclearOperative Surgical ProceduresOutcomeParkinson DiseasePatientsPlant RootsPrincipal Component AnalysisProtocols documentationPyramidal TractsRF coilResidual stateResolutionRetrospective StudiesSamplingScanningSignal TransductionSpectrum AnalysisTechniquesTestingThalamic NucleiTherapeuticTimeTranslatingVariantbasebrain tumor resectionclinically relevantdenoisingdiagnostic valuefunctional MRI scanhealthy volunteerimage reconstructionimaging modalityimprovednervous system disorderneurosurgeryreconstructionresearch studyresponsesoft tissuetheoriesultrasound
项目摘要
PROJECT SUMMARY
MRI is a widely-used imaging modality which offers unique soft-tissue contrast and provides a wealth of
anatomical and functional information. However, MRI is inherently slow and signal-to-noise ratio (SNR)-limited,
resulting in variable diagnostic image quality and limiting statistical power for research studies. Particularly
clinically relevant SNR-starved applications are diffusion MRI (dMRI) and functional (fMRI) for surgical planning
(e.g., in functional neurosurgery and in brain tumors). dMRI suffers from long scan times, low resolution and
subject motion; BOLD fMRI response signal changes are only about 3% using 3T MRI. State-of-the-art
denoising methods, based on image models or smoothing, result in partial-volume effects and loss of fine
anatomical detail.
We have identified an untapped reserve for significant noise reduction in clinically feasible MRI protocols
resulting in SNR increase and Rician MRI noise floor decrease by factors of up to 5-fold, using a model-free
noise reduction (denoising) and image reconstruction technique, based on random matrix theory. It does not
rely on user-specific input, and outperforms state-of-the-art denoising methods. Our method allows us to
identify and remove a pure thermal noise contribution in the principal component analysis (PCA) representation
of an MRI data matrix. Remarkably, while noise enters randomly in each voxel's signal, its contribution to the
principal components becomes deterministic, when signals from large number of voxels and inequivalent
acquisitions (e.g., q-space, time-domain, coils) are combined, which allows us to identify and remove pure-
noise components. The key to our MP-PCA method is acquisition redundancy, such that the bulk of the PCA
spectrum is dominated by the noise, whose contribution can then be identified and removed. While we initially
exploited redundancy in the dMRI q-space, our preliminary findings show it is also present in multi-coil arrays,
and in the temporal domain of fMRI.
The main goals of this study are: To develop and optimize the MP-PCA denoising framework at the level of
multi-coil image reconstruction and to evaluate its accuracy and precision in dMRI (Aim 1); to evaluate its
clinical utility for increasing dMRI resolution in functional neurosurgery, based on the ground-truth derived from
MR-guided ultrasound intra-operative feedback (Aim 2); and to evaluate its clinical utility for decreasing fMRI
scan time in preoperative planning of brain tumor resections (Aim 3).
Fundamentally, this project will establish an objective framework to quantify the information content of different
MRI modalities, by separating between the signal and the noise. Its applications to dMRI and fMRI, together
with using multi-coil redundancy, will lead to maximal possible SNR, thereby reducing scan time, and
improving resolution, precision, sensitivity and diagnostic utility of clinically relevant MRI protocols.
项目摘要
MRI是一种广泛使用的成像方式,其提供独特的软组织对比度,并提供丰富的
解剖和功能信息。然而,MRI固有地慢并且信噪比(SNR)受限,
从而导致可变的诊断图像质量并限制研究的统计能力。特别
临床相关的SNR缺乏应用是用于手术计划的弥散MRI(dMRI)和功能MRI(fMRI
(e.g.,在功能性神经外科和脑肿瘤中)。dMRI的缺点是扫描时间长、分辨率低,
受试者运动;使用3 T MRI时,BOLD fMRI响应信号变化仅为约3%。State-of-the-art
基于图像模型或平滑的去噪方法导致部分体积效应和精细度损失,
解剖细节
我们已经确定了一个未开发的储备显着减少噪音在临床上可行的MRI协议
导致SNR增加和Rician MRI噪声基底降低高达5倍,使用无模型
降噪(去噪)和图像重建技术,基于随机矩阵理论。它不
依赖于用户特定的输入,并优于最先进的去噪方法。我们的方法可以让我们
识别并去除所述主成分分析(PCA)表示中的纯热噪声贡献
核磁共振成像数据矩阵。值得注意的是,虽然噪声随机进入每个体素的信号,但它对信号的贡献是随机的。
当信号来自大量体素且不等价时,
收购(例如,q空间,时域,线圈)相结合,这使我们能够识别和去除纯-
噪声成分我们的MP-PCA方法的关键是采集冗余,使得PCA的大部分
频谱由噪声主导,然后可以识别和去除噪声的贡献。虽然我们最初
利用dMRI q空间中的冗余,我们的初步发现表明它也存在于多线圈阵列中,
和功能磁共振成像的时间域。
本研究的主要目标是:在以下水平上开发和优化MP-PCA去噪框架:
多线圈图像重建,并评价其在dMRI中的准确性和精密度(目标1);评价其在dMRI中的准确性和精密度(目标1)。
基于从以下来源获得的基础事实,在功能神经外科中提高dMRI分辨率的临床实用性
MR引导超声术中反馈(目标2);并评价其减少fMRI的临床效用
脑肿瘤切除术术前计划中的扫描时间(目标3)。
从根本上说,这个项目将建立一个客观的框架,以量化不同的信息内容,
MRI模态,通过分离信号和噪声。它在dMRI和fMRI上的应用,
使用多线圈冗余,将导致最大可能的SNR,从而减少扫描时间,
改善临床相关MRI协议的分辨率、精确度、灵敏度和诊断效用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Els Fieremans其他文献
Els Fieremans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Els Fieremans', 18)}}的其他基金
International Society for Magnetic Resonance in Medicine (ISMRM) workshop on WHATEVER: WHite Matter, Analysis, Translation, Experimental Validation, Evaluation, and Reproducibility
国际医学磁共振学会 (ISMRM) 研讨会主题为:白质、分析、翻译、实验验证、评估和再现性
- 批准号:
10757846 - 财政年份:2023
- 资助金额:
$ 64.61万 - 项目类别:
Random Matrix Theory-Based Noise Removal in MRI
MRI 中基于随机矩阵理论的噪声消除
- 批准号:
10229483 - 财政年份:2019
- 资助金额:
$ 64.61万 - 项目类别:
Random Matrix Theory-Based Noise Removal in MRI
MRI 中基于随机矩阵理论的噪声消除
- 批准号:
10018721 - 财政年份:2019
- 资助金额:
$ 64.61万 - 项目类别:
Mesoscopic Biomarkers of Neurodegeneration with Diffusion MRI
弥散 MRI 神经退行性变的细观生物标志物
- 批准号:
8744985 - 财政年份:2014
- 资助金额:
$ 64.61万 - 项目类别:
Mesoscopic Biomarkers of Neurodegeneration with Diffusion MRI
弥散 MRI 神经退行性变的细观生物标志物
- 批准号:
9134909 - 财政年份:2014
- 资助金额:
$ 64.61万 - 项目类别:
Mesoscopic Biomarkers of Neurodegeneration and Inflammation with Diffusion MRI
弥散 MRI 神经退行性变和炎症的细观生物标志物
- 批准号:
10673125 - 财政年份:2014
- 资助金额:
$ 64.61万 - 项目类别:
Mesoscopic Biomarkers of Neurodegeneration and Inflammation with Diffusion MRI
弥散 MRI 神经退行性变和炎症的细观生物标志物
- 批准号:
10022344 - 财政年份:2014
- 资助金额:
$ 64.61万 - 项目类别:
Mesoscopic Biomarkers of Neurodegeneration and Inflammation with Diffusion MRI
弥散 MRI 神经退行性变和炎症的细观生物标志物
- 批准号:
10457453 - 财政年份:2014
- 资助金额:
$ 64.61万 - 项目类别:
Mesoscopic Biomarkers of Neurodegeneration and Inflammation with Diffusion MRI
弥散 MRI 神经退行性变和炎症的细观生物标志物
- 批准号:
10251994 - 财政年份:2014
- 资助金额:
$ 64.61万 - 项目类别:
TR&D 4: Revealing Microstructure: Biophysical modeling and validation for discovery and clinical care
TR
- 批准号:
9804443 - 财政年份:2014
- 资助金额:
$ 64.61万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 64.61万 - 项目类别:
Continuing Grant














{{item.name}}会员




