Engineering Novel Precision Genome Editing Tools
工程新型精密基因组编辑工具
基本信息
- 批准号:10472939
- 负责人:
- 金额:$ 119.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBiotechnologyCellsClustered Regularly Interspaced Short Palindromic RepeatsCystic FibrosisDNADetectionDiseaseEngineeringGTP-Binding Protein alpha Subunits, GsGene ExpressionGenetic DiseasesGenetic VariationGenomicsHealthHuman GeneticsLivestockMolecularNeighborhoodsNeurodegenerative DisordersNucleotidesPathogenicityPathway interactionsPoint MutationProgeriaPurinesPyrimidinesRNA EditingSickle Cell AnemiaSingle Nucleotide PolymorphismSyndromeTherapeuticTherapeutic AgentsWorkbasebase editorcancer typedesigngenome editingin vivoinnovationinterestnext generationnovelnovel therapeutic interventionnucleaseprime editorprogramsrepairedtool
项目摘要
PROJECT SUMMARY/ABSTRACT
Half of the known human genetic variations that contribute to disease are due to single nucleotide
polymorphisms (SNPs). Thus, there is a pressing need to develop precision genome editing tools that are able
to correct these SNPs with high efficiency and accuracy. Current CRISPR-Cas based precision genome editing
tools, such as DNA base editors and prime editors, were designed to perform targeted single nucleotide changes
without introducing double stranded breaks and relying on the homology-directed repair pathway. However,
these tools have several drawbacks observed in cells, such as off-target DNA and RNA editing, low efficiency,
and unintended editing of nucleotides within the neighborhood of the target nucleotide (bystander editing) leading
to undesired genomic changes. Moreover, DNA base editors are able to perform only transitions (interchanging
purines (AG) or pyrimidines (CT)) but not transversions (interchanging pyrimidines for purines and vice
versa). These shortcomings reduce the targeting capabilities of current precision genome editing tools and are
the key limitations of using them as therapeutic agents. Building on our recent work that explains the molecular
basis of the DNA base editors’ drawbacks, we propose four innovative strategies to design precision genome
editing approaches that address the limitations of current genome editing tools and expand their targeting scope.
Three of the four strategies will yield base editors with dual programmability. Besides the programable nuclease
(Cas9) that guides base editors to the sequence of interest, these novel base editors will additionally have easily
programmable catalytic modules that will allow selecting only one nucleotide for editing. This dual
programmability will eliminate the bystander editing and make these DNA base editors exceptionally accurate.
Two out of four designs will yield DNA base editors able to perform transversions (interchanging pyrimidines for
purines (CG and TG)) and to correct additional ~25% of pathogenic SNPs inaccessible by current base
editors. Moreover, one of the two transversion base editors will possess dual programmability, hence will be
exceptionally accurate. Overall, the four strategies proposed here will yield the next generation precision genome
editing tools that, besides the direct therapeutic corrections of SNPs’ in vivo, will also allow interrogating the
association between multiple SNPs, gene expression and diseases (neurodegenerative diseases or various
types of cancers). Thus, these DNA editing tools will pave the way for investigating the molecular mechanisms
of multiple genetic disorders and enable us to develop new therapeutic strategies.
项目概要/摘要
导致疾病的已知人类遗传变异中有一半是由单核苷酸引起的
多态性(SNP)。因此,迫切需要开发能够实现精准基因组编辑的工具。
高效、准确地校正这些 SNP。当前基于 CRISPR-Cas 的精准基因组编辑
DNA 碱基编辑器和 Prime 编辑器等工具旨在执行有针对性的单核苷酸变化
无需引入双链断裂并依赖同源定向修复途径。然而,
这些工具在细胞中观察到了一些缺点,例如 DNA 和 RNA 编辑脱靶、效率低、
以及目标核苷酸附近的核苷酸的意外编辑(旁观者编辑)导致
不良的基因组变化。此外,DNA 碱基编辑器只能执行转换(交换
嘌呤(AG)或嘧啶(CT)),但不是颠换(将嘧啶互换为嘌呤,反之亦然)
反之亦然)。这些缺点降低了当前精准基因组编辑工具的靶向能力,并且
使用它们作为治疗剂的主要局限性。以我们最近解释分子的工作为基础
针对DNA碱基编辑器的缺点,我们提出了四种创新策略来设计精准基因组
解决当前基因组编辑工具的局限性并扩大其靶向范围的编辑方法。
四种策略中的三种将产生具有双重可编程性的碱基编辑器。除了可编程核酸酶
(Cas9)引导碱基编辑器找到感兴趣的序列,这些新颖的碱基编辑器还可以轻松地
可编程催化模块,允许仅选择一种核苷酸进行编辑。这个双
可编程性将消除旁观者编辑并使这些 DNA 碱基编辑器异常准确。
四分之二的设计将产生能够执行颠换的 DNA 碱基编辑器(将嘧啶互换为
嘌呤(CG 和 TG))并纠正当前碱基无法访问的额外约 25% 的致病性 SNP
编辑们。此外,两个颠换碱基编辑器之一将具有双重可编程性,因此将
异常准确。总的来说,这里提出的四种策略将产生下一代精准基因组
编辑工具,除了在体内对 SNP 进行直接治疗校正外,还可以询问
多个SNP、基因表达和疾病(神经退行性疾病或各种疾病)之间的关联
癌症类型)。因此,这些 DNA 编辑工具将为研究分子机制铺平道路
多种遗传性疾病的研究,使我们能够开发新的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Audrone Lapinaite其他文献
Audrone Lapinaite的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Pioneering reproductive biotechnology innovations for equine breeding
开创马匹育种生殖生物技术创新
- 批准号:
LP230100156 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Linkage Projects
Industrial Biotechnology Innovation Cluster
产业生物技术创新集群
- 批准号:
EP/Y024168/1 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Research Grant
Environmental Biotechnology Innovation Centre
环境生物技术创新中心
- 批准号:
BB/Y008332/1 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Research Grant
MFB: Partnerships to Transform Emerging Industries - RNA Tools/Biotechnology: Stabilizing Hairpin Inserts in RNA Virus Induced Gene Silencing Vectors
MFB:合作变革新兴产业 - RNA 工具/生物技术:稳定 RNA 病毒诱导基因沉默载体中的发夹插入
- 批准号:
2330663 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Standard Grant
Conference: Translating Molecular Science Innovations into Biotechnology Solutions
会议:将分子科学创新转化为生物技术解决方案
- 批准号:
2419731 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Standard Grant
Shear Innovation: Valorising wool waste using biotechnology to enhance horticultural peat-free growing media
剪切创新:利用生物技术提高羊毛废料的价值,以增强园艺无泥炭生长介质
- 批准号:
10106787 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Launchpad
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
- 批准号:
2344389 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Standard Grant
I-Corps: Translation potential of a miniaturized biotechnology platform for nucleic acid extraction, purification, and library preparation
I-Corps:用于核酸提取、纯化和文库制备的小型生物技术平台的转化潜力
- 批准号:
2421022 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Standard Grant
Engineering Biology Hub for environmental processing and recovery of metals; from contaminated land to industrial biotechnology in a circular economy
用于环境处理和金属回收的工程生物中心;
- 批准号:
BB/Y008456/1 - 财政年份:2024
- 资助金额:
$ 119.91万 - 项目类别:
Research Grant
Development of magnetic force biotechnology to facilitate neural regeneration
开发磁力生物技术促进神经再生
- 批准号:
EP/X014126/1 - 财政年份:2023
- 资助金额:
$ 119.91万 - 项目类别:
Research Grant














{{item.name}}会员




