Investigating the molecular, cellular and circuit effects of transcranial magnetic stimulation
研究经颅磁刺激的分子、细胞和电路效应
基本信息
- 批准号:10471360
- 负责人:
- 金额:$ 76.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyAreaBiophysicsBrainBrain regionComputer ModelsControlled EnvironmentDevelopmentDoseElectrodesElectrophysiology (science)ElementsEnvironmentFoundationsFutureGoalsHippocampus (Brain)HumanImaging TechniquesIn VitroInterneuronsInvestigationLocationMeasurementMeasuresMental disordersMethodologyMethodsMicroscopicModelingMolecularMonkeysMorphologic artifactsMotor CortexMotor Evoked PotentialsMusNeuronsOutcomePharmacological TreatmentPhysiologic pulsePhysiologicalPopulationPositioning AttributePreparationPropertyProtocols documentationRattusReproducibilityResearchResolutionSafetyScanningSliceSpatial DistributionStandardizationTechnologyTherapeuticTimeTissuesTranscranial magnetic stimulationTranslatingVariantbasebrain sizebrain tissuecomputer frameworkelectric fieldexperienceexperimental studyheuristicsimprovedin vitro Modelin vivoin vivo Modelnervous system disordernonhuman primatenoninvasive brain stimulationoptical imagingrelating to nervous systemrepetitive transcranial magnetic stimulationresponsesextissue culturetissue preparationtooltreatment strategy
项目摘要
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method which can alter brain
activity in humans in a safe manner. Due its ease of application and ability to target specific brain regions, the
repetitive application of TMS (rTMS) has the potential of augmenting or even replacing classic pharmacologic
treatment-strategies. However, due to the enormous parameter space concerning its application (amplitude,
coil position and orientation), optimal, i.e., personalized stimulation parameters for rTMS are very difficult to
determine. Most importantly, principled efforts for optimizing TMS stimulation parameters are seriously limited
by a poor understanding of molecular and cellular mechanisms. In-vitro recordings and functional optical
imaging in slice preparations allow a direct assessment of the interaction of TMS electric fields with neurons in
a highly controlled environment and allow for a rapid scan of stimulation parameters not achievable in human
studies. Non-human primate (NHP) models are ideally suited to study circuit effects of TMS due their similarity
to humans and the ability to perform invasive recordings to measure the electrophysiological response to TMS.
Computational models can predict the electric field distribution of TMS in neural tissue, allowing to couple the
biophysics of TMS with its physiological effects.
Here, we propose to study the effects of changing TMS parameters in detail using in-vitro slice preparation,
NHP recordings and computational modelling. We plan to study the molecular, cellular and circuit effects of
transcranial magnetic stimulation in three specific aims: 1.) Systematic study of TMS stimulation parameters
(stimulation intensity, coil orientation) in-vitro using mouse vs. rat hippocampal slices. 2) We will measure the
circuit effects of varying TMS parameters in a NHP model. 3) Computational modelling of TMS electric fields
across scales.
Our findings will form the foundation for a mechanistic understanding between the biophysics of TMS electric
fields and their physiological effects. This can form the basis for future efforts to improve noninvasive
stimulation technologies.
摘要
经颅磁刺激(TMS)是一种可以改变大脑的非侵入性脑刺激方法
以安全的方式在人体内活动。由于其易于应用,并且能够针对特定的大脑区域,
TMS(RTMS)的重复应用具有扩充甚至取代经典药理作用的潜力
治疗策略。然而,由于涉及其应用的参数空间巨大(幅度,
线圈位置和方向)、最优,即用于rTMS的个性化刺激参数很难
确定。最重要的是,用于优化TMS刺激参数的原则性努力严重有限
这是由于对分子和细胞机制的理解不足所致。体外记录和功能光学
切片制备中的成像允许直接评估TMS电场与神经元的相互作用
高度受控的环境,并允许快速扫描人类无法实现的刺激参数
学习。非人灵长类动物(NHP)模型非常适合于研究TMS的回路效应,因为它们具有相似性
以及进行侵入性记录以测量对TMS的电生理反应的能力。
计算模型可以预测TMS在神经组织中的电场分布,从而使耦合
TMS的生物物理学及其生理效应。
在这里,我们建议使用体外切片制备来详细地研究改变TMS参数的影响,
NHP记录和计算模型。我们计划研究分子、细胞和电路效应
经颅磁刺激有三个具体目的:1)TMS刺激参数的系统研究
(刺激强度,线圈方向)使用小鼠和大鼠海马片进行体外实验。2)我们将测量
NHP模型中TMS参数变化的电路效应。3)TMS电场计算模型
不同的尺度。
我们的发现将为从机理上理解TMS电子的生物物理学奠定基础
场及其生理效应。这可以为未来改进非侵入性的努力奠定基础
刺激技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arnaud Y Falchier其他文献
Arnaud Y Falchier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arnaud Y Falchier', 18)}}的其他基金
Investigating the molecular, cellular and circuit effects of transcranial magnetic stimulation
研究经颅磁刺激的分子、细胞和电路效应
- 批准号:
10685155 - 财政年份:2019
- 资助金额:
$ 76.48万 - 项目类别:
Deep learning based estimation of TMS electric fields
基于深度学习的 TMS 电场估计
- 批准号:
10405791 - 财政年份:2019
- 资助金额:
$ 76.48万 - 项目类别:
Investigating the molecular, cellular and circuit effects of transcranial magnetic stimulation
研究经颅磁刺激的分子、细胞和电路效应
- 批准号:
10246942 - 财政年份:2019
- 资助金额:
$ 76.48万 - 项目类别:
Investigating the molecular, cellular and circuit effects of transcranial magnetic stimulation
研究经颅磁刺激的分子、细胞和电路效应
- 批准号:
9793736 - 财政年份:2019
- 资助金额:
$ 76.48万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 76.48万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 76.48万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 76.48万 - 项目类别:
Studentship