AIDen: An AI-empowered detection and diagnosis system for jaw lesions using CBCT
AIDen:使用 CBCT 的人工智能驱动下颌病变检测和诊断系统
基本信息
- 批准号:10383494
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActive LearningAddressAdoptedAffectAgreementAlgorithmsAnatomyAppearanceAreaArtificial IntelligenceClinicalClinical Decision Support SystemsClinics and HospitalsComplexDataData SetDentalDental SchoolsDentistsDetectionDiagnosisDifferential DiagnosisDiseaseEndodonticsEnvironmentExpert SystemsGoalsImageImage AnalysisJawKnowledgeLesionLocationMachine LearningMathematicsMedicalOralOral MedicineOral Surgical ProceduresPatientsPerformancePeriapical PeriodontitisPhasePopulationPrivate PracticeProcessPublicationsRadiation exposureReproducibilityResearchResearch InstituteSavingsShapesSiteSmall Business Technology Transfer ResearchStructureSystemTechniquesTechnologyThree-Dimensional ImageThree-Dimensional ImagingTimeTrainingUncertaintyValidationVisualWorkage groupautomated segmentationbaseclinical decision supportdeep learningdeep learning algorithmdesignempoweredfeasibility testinghuman errorimaging Segmentationimaging modalityimprovedindividual patientinnovationlearning strategymachine learning pipelinenoveloptimal treatmentsperiapicalpreventpublic health relevanceradiological imagingradiomicssoftware systemstreatment planning
项目摘要
Dental CBCT is a 3D imaging modality widely adopted to help dentists detect and diagnose jaw lesions. Due to
minimum information loss (compared to conventional 2D radiography) and low radiation exposure (compared to
conventional CT), it has become the “go-to” radiographic technique in various dental fields. Gaps: Accompanying
the clear benefits of dental CBCT is an overwhelming amount of 3D data presented to clinicians. Clinician-based
CBCT interpretation suffers from low inter-/intra-observer agreement and low accuracy. AI/Deep Learning (DL)
holds great promise to automate CBCT image analysis and provide objective, accurate detection and diagnosis
capabilities to support clinical decision. However, limited research has been done due to unique and significant
challenges: (1) Dental CBCT provides 3D images composed of a complicated mix of different oral
structures/contents, preventing the direct use of existing general-purse DL algorithms for image segmentation
and calling for new DL designs. (2) AI/DL is known to be data-hungry. It is very difficult to obtain a large number
of accurately-annotated CBCT images to train DL due to complex oral anatomy and inevitable human errors,
which calls for efficient strategies to reduce annotation effort for DL training. (3) Due to these challenges, the
current software systems used to assist clinicians in dental CBCT interpretation do not provide advanced AI-
based lesion detection and diagnosis capabilities, which makes this STTR project timely and important. We
recently developed a DL algorithm that integrates unique oral anatomy into the DL design, namely
“Anatomically-Constrained dense UNet (AC-UNet)”. In addition to improving accuracy, AC-UNet is also
annotation-efficient as it is not only trained using CBCT images but also constrained by anatomical domain
knowledge through novel mathematical encoding and posterior regularization-based optimization. Applied to a
preliminary dataset of CBCTs with periapical lesions indicative of Apical Periodontitis (AP), AC-UNet achieved
high accuracy in segmentation and lesion detection on CBCT images and outperformed state-of-the-art DL
algorithms. Our long-term goal is to develop the first-ever AI-based software system called “AIDen” to perform
automatic segmentation, lesion detection, and differential diagnosis based on dental CBCT for a variety of jaw
lesions/diseases with high accuracy, reliability, and reproducibility. AIDen will assist clinicians in providing
optimal treatment decision for each patient. Our Phase-I goal is to develop and test the feasibility of AIDen for
lesion detection and differential diagnosis focusing on AP, a highly-prevalent jaw lesion/disease. Three aims
are: (1) Optimize design: to develop an extension of AC-UNet to integrate a broader range of different types of
oral-anatomical knowledge into the DL design; (2) Optimize training: to develop an Active Learning strategy to
further improve annotation efficiency of AC-UNet training; (3) Clinical validation and preliminary assessment of
diagnosis capability for clinical decision support. All aims will lay groundwork for Phase-II when an end-to-end
AIDen system will be built and validated using multi-site datasets and address a variety of jaw lesions/diseases.
牙科CBCT是一种被广泛采用的3D成像模式,可帮助牙科医生检测和诊断颌骨病变。由于
最小的信息损失(与传统的2D射线照相相比)和低辐射暴露(与
传统CT),它已成为各种牙科领域的“首选”放射摄影技术。标签:陪伴
牙科CBCT的明显好处是向临床医生提供了大量的3D数据。基于临床医生
CBCT解释存在观察者间/观察者内一致性低和准确性低的问题。AI/深度学习(DL)
CBCT图像分析自动化,提供客观、准确的检测和诊断,
支持临床决策。然而,有限的研究已经完成,由于独特和重要的
挑战:(1)牙科CBCT提供由不同口腔组织的复杂混合组成的3D图像,
结构/内容,防止直接使用现有的通用钱包DL算法进行图像分割
并呼吁新的DL设计。(2)AI/DL是众所周知的数据饥渴。很难获得大量的
由于复杂的口腔解剖结构和不可避免的人为错误,
这需要有效的策略来减少DL训练的注释工作。(3)由于这些挑战,
用于辅助临床医生进行牙科CBCT解释的当前软件系统不提供先进的AI,
基于病变检测和诊断能力,这使得这个STTR项目及时和重要。我们
最近开发了一种DL算法,该算法将独特的口腔解剖学整合到DL设计中,即
解剖学约束的密集UNet(AC-UNet)。除了提高准确性,AC-UNet还
注释效率高,因为它不仅使用CBCT图像进行训练,而且还受解剖区域的约束
通过新颖的数学编码和基于后验正则化的优化来获取知识。应用于
具有提示根尖牙周炎(AP)的根尖周病变的CBCT的初步数据集,AC-UNet达到
CBCT图像分割和病变检测的准确性高,性能优于最先进的DL
算法我们的长期目标是开发有史以来第一个基于AI的软件系统“AIDen”,
基于牙科CBCT的各种颌骨的自动分割、病变检测和鉴别诊断
病变/疾病,具有高准确性、可靠性和可重复性。AIDen将协助临床医生提供
为每位患者提供最佳治疗方案。我们的第一阶段目标是开发和测试AIDen的可行性,
病变检测和鉴别诊断,重点是AP,一种高度流行的颌骨病变/疾病。三个目标
(1)优化设计:开发AC-UNet的扩展,以整合更广泛的不同类型的
口腔解剖学知识融入DL设计;(2)优化培训:制定主动学习策略,
进一步提高AC-UNet训练的标注效率;(3)临床验证和初步评估
临床决策支持的诊断能力。所有目标都将为第二阶段奠定基础,
AIDen系统将使用多中心数据集构建和验证,并解决各种颌骨病变/疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Li其他文献
Design and analysis of a novel low-temperature solar thermal electric system with two-stage collectors and heat storage units
新型两级集热器和蓄热装置低温太阳能热电系统的设计与分析
- DOI:
10.1016/j.renene.2011.02.008 - 发表时间:
2011-09 - 期刊:
- 影响因子:8.7
- 作者:
Gang Pei;Jing Li;Jie Ji - 通讯作者:
Jie Ji
Jing Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Li', 18)}}的其他基金
Physiologically Based Pharmacokinetic Modeling of Drug Penetration into the Human Brain and Brain Tumors
基于生理学的药物渗透到人脑和脑肿瘤的药代动力学模型
- 批准号:
10674753 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Physiologically Based Pharmacokinetic Modeling of Drug Penetration into the Human Brain and Brain Tumors
基于生理学的药物渗透到人脑和脑肿瘤的药代动力学模型
- 批准号:
10459595 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Physiologically Based Pharmacokinetic Modeling of Drug Penetration into the Human Brain and Brain Tumors
基于生理学的药物渗透到人脑和脑肿瘤的药代动力学模型
- 批准号:
10298016 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
- 批准号:
10172824 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
- 批准号:
10677882 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
- 批准号:
10408777 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Effect of Medicare Reimbursement for Care Planning on End of Life Care among Patients with Alzheimer's Disease and Related Dementias: A Quasi-Experimental Study
医疗保险报销护理计划对阿尔茨海默病和相关痴呆症患者临终护理的影响:一项准实验研究
- 批准号:
10690298 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Impact of the Physician Payments Sunshine Act on Prescription Drug Utilization and Spending
医生支付阳光法案对处方药使用和支出的影响
- 批准号:
9807060 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Project MISSION: Developing a multicomponent, Multilevel Implementation Strategy for Syncope OptImalCare thrOugh eNgagement
项目使命:通过参与制定晕厥优化护理的多组成部分、多层次实施策略
- 批准号:
9755244 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Development of nucleic acid delivery platform based on polymeric CXCR4 antagonists
基于聚合CXCR4拮抗剂的核酸递送平台的开发
- 批准号:
9045744 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
相似海外基金
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
- 批准号:
2315747 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Defending Cyberspace through Active Learning
CyberCorps 服务奖学金:通过主动学习捍卫网络空间
- 批准号:
2336586 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Project Visibility: Understanding the Experiences of Black Students in Active Learning Mathematics Courses in a Hispanic-Serving Institution Context
项目可见性:了解黑人学生在西班牙裔服务机构背景下主动学习数学课程的经历
- 批准号:
2337029 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315697 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315696 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference: Active Learning Communities in Biochemistry
会议:生物化学主动学习社区
- 批准号:
2411535 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315698 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315701 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




