Structural dynamics of the human brain in vivo from tagged MRI and MR elastography.
来自标记 MRI 和 MR 弹性成像的人脑体内结构动力学。
基本信息
- 批准号:10382911
- 负责人:
- 金额:$ 4.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccelerationAdultAffectAgeAmericanAnatomyAnteriorBrainBrain regionCommunitiesComputer ModelsDataData SetDevelopmentEquipmentFemaleFrequenciesGenderHeadHelmetHumanImaging TechniquesImpulsivityInjuryLateralLeadLeftLightMagnetic Resonance ElastographyMagnetic Resonance ImagingMeasurementMeasuresMechanicsMethodsModalityMotionNeckPatientsPatternPhysiologicalPlayPreventionProcessPropertyResearchResearch PersonnelRoleRotationShapesTBI treatmentTimeTissuesTraumatic Brain InjuryWorkage groupassaultautomobile accidentbrain magnetic resonance imagingbrain tissuechronic traumatic encephalopathycomputer generatedcontact sportscraniumdesignelastographyexperimental studyhead impacthuman subjectin vivoinjuredmalemultidimensional dataresponsesevere injurysexvibration
项目摘要
PROJECT SUMMARY/ABSTRACT
Traumatic brain injury (TBI) is widespread and potentially debilitating, and multiple mild head impacts can
potentially cause chronic traumatic encephalopathy (CTE). Despite its importance, the underlying mechanics of
the brain’s response to skull acceleration are not fully understood. This project is designed to identify and
characterize natural modes of oscillation in the living human brain, using magnetic resonance imaging (MRI) of
the brain during mild head accelerations (either very light impacts or low-amplitude vibration). Modes of
oscillation are types of motion to which the brain is particularly vulnerable; such modes can be activated by skull
motion in specific directions with particular frequency components. In preliminary studies I have identified
seemingly consistent modes of oscillation in brains of 19 human subjects, by analyzing displacement and strain
data sets from tagged MRI with a method known as dynamic mode decomposition. In this project, I hypothesize
that the dominant natural modes of oscillation in particular, and the dynamic response of the brain to skull
excitation in general, will be similar across all subjects, but the parameters of the response will differ quantitatively
in subjects of different age and gender (due to differences in size, shape, and stiffness). In Aim 1, I will identify
and characterize modes of oscillation in the human brain, again using dynamic mode decomposition of tagged
MRI data, in groups of subjects of different ages and genders. Specifically I will quantify the damped natural
frequencies, damping ratios, modal coefficients, and spatial patterns (mode shapes) that characterize each
mode. These quantities will be obtained for male and female subjects in three age groups, during two different
types of head motion: (i) anterior-posterior motion (neck extension, or “yes” nodding) and (ii) axial rotation (neck
rotation, or “no” nodding). In Aim 2 I will determine the frequency response of the human brain to harmonic skull
motion using magnetic resonance elastography (MRE), again in subjects of different ages and genders. This will
be done to determine whether the harmonic brain deformations observed in MRE reflect anatomical or
physiological differences due to age or sex. MRE studies will be performed over a range of frequencies, with
either occipital excitation (anterior-posterior motion) or lateral excitation (right-left motion). A key feature of the
brain’s response is the amplitude of brain deformation (shear strain amplitude) relative to the amplitude of skull
acceleration. This ratio is expected to vary with the direction and frequency of skull motion, as well as with age
and sex. Successful completion of these Aims will provide quantitative understanding of how skull motion leads
to brain deformation in specific regions of the brain, under different impact scenarios, and allow quantitative
assessment of computer models of TBI. This understanding will ultimately be critical to effective prevention and
treatment of TBI and CTE.
项目摘要/摘要
创伤性脑损伤(TBI)是广泛的,可能使人衰弱,并且有多种轻度的头部影响可以
可能引起慢性创伤性脑病(CTE)。尽管它的重要性是
大脑对颅骨加速度的反应尚未完全理解。该项目旨在识别和
使用磁共振成像(MRI)来表征活体大脑中振荡的自然模式
轻度头部加速度的大脑(非常轻的冲击或低振幅振动)。模式
振荡是大脑特别脆弱的运动类型。这样的模式可以被头骨激活
在特定频率组件的特定方向上运动。在初步研究中,我已经确定
通过分析位移和应变,看似一致的19个人类受试者大脑的振荡模式
使用称为动态模式分解的方法从标记的MRI进行数据集。在这个项目中,我假设
尤其是振荡的主要自然模式,以及大脑对头骨的动态反应
一般而言,兴奋在所有受试者中都会相似,但是响应的参数将在定量上不同
在AIM 1中,我将确定
并表征人脑中振荡模式,再次使用标记的动态模式分解
MRI数据,不同年龄和性别的受试者组。具体而言,我将量化阻尼的自然
频率,跳舞比,模态系数和空间模式(模式形状)
模式。在两个不同的情况下,将为三个年龄组的男性和女性受试者获得这些数量
头部运动的类型:(i)前后运动(颈部伸展或“是”点头)和(ii)轴向旋转(颈部
旋转或“否”点头)。在AIM 2中,我将确定人脑对谐波头骨的频率响应
在不同年龄和性别的受试者中,使用磁共振弹性图(MRE)进行运动。这会
完成以确定在MRE中观察到的谐波大脑变形是反映解剖学还是
由于年龄或性别引起的生理差异。 MRE研究将在一系列频率上进行,并具有
枕骨兴奋(前后运动)或横向兴奋(右左运动)。的关键特征
大脑的响应是相对于颅骨放大器的大脑变形(剪切应变放大器)的放大器
加速度。预计该比率将随颅骨运动的方向和频率而变化,并且随着年龄的增长
和性。这些目标的成功完成将提供对颅骨运动如何线索的定量理解
在大脑的特定区域,在不同的影响场景下,并允许定量
评估TBI的计算机模型。这种理解最终对于有效的预防和
TBI和CTE的处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan De Niro Escarcega其他文献
Jordan De Niro Escarcega的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jordan De Niro Escarcega', 18)}}的其他基金
Structural dynamics of the human brain in vivo from tagged MRI and MR elastography.
来自标记 MRI 和 MR 弹性成像的人脑体内结构动力学。
- 批准号:
10602407 - 财政年份:2022
- 资助金额:
$ 4.63万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
- 批准号:
10571411 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别:
Axonal Varicosity Dynamics in Central Neuron Mechanosensation and Injury
中枢神经元机械感觉和损伤中的轴突静脉曲张动力学
- 批准号:
10905596 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别:
Velocity-Selective Arterial Spin Labeling based Perfusion Mapping for Alzheimer's disease
基于速度选择性动脉自旋标记的阿尔茨海默病灌注图
- 批准号:
10662909 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 4.63万 - 项目类别: