GAIT complex formation and Mycobacterium tuberculosis
步态复合体的形成和结核分枝杆菌
基本信息
- 批准号:10381691
- 负责人:
- 金额:$ 20.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAmino Acyl-tRNA SynthetasesAnti-Inflammatory AgentsAntibodiesAntimycobacterial AgentsBacillusBindingBiologicalCCL11 geneCCL22 geneCCL25 geneCDK5 geneCDK6-associated protein p18CXCL13 geneCell LineCellsCeruloplasminComplementComplexCyclic GMP-Dependent Protein KinasesDataDetectionDrug resistant Mycobacteria TuberculosisElementsEnvironmentEtiologyExposure toGenus MycobacteriumGoalsGrowthHealthHumanImmune responseImmune systemImmunoprecipitationInfectionInflammationInflammatoryInterferon Type IIInterferon-alphaInvadedKineticsMacrophage ActivationMacrophage Colony-Stimulating FactorMeasuresMediatingMessenger RNAMicrobeModelingMolecularMonitorMycobacterium InfectionsMycobacterium bovisMycobacterium tuberculosisMycobacterium tuberculosis H37RvNatural ImmunityOutcomePathogenesisPathogenicityPeripheral Blood Mononuclear CellPhagocytosisPhagosomesPharmacologic SubstancePhosphorylationPhosphotransferasesPlanet EarthPopulationProcessProtein InhibitionProtein KinaseProtein SubunitsProteinsReactionRibosomal ProteinsRibosomesRoleSystemT-LymphocyteTestingTranslationsTuberculosisU937 CellsUntranslated RegionsVEGFA geneVirulenceWestern BlottingWorld Health OrganizationantimicrobialbactericidecGMP-dependent protein kinase Ibetachemokinecytokinedesignexperimental studyinhibitormacrophagemimeticsmonocytemutantmycobacterialnovelnovel therapeutic interventionp38 Mitogen Activated Protein Kinasepathogenpreventprolylglutamic acidreceptorresistance mechanismresponsesuccess
项目摘要
PROJECT SUMMARY
Tuberculosis (TB) remains a major health concern, especially with the global emergence of drug resistant
Mycobacterium tuberculosis (Mtb) strains. The World Health Organization estimated that nearly one third of the
world's population is currently infected with Mtb, making this bacillus one of the most successful pathogens on
earth. A key factor that contributes to the success of Mtb is its ability to survive inside macrophage, the host
cell that has evolved the ability to capture and kill invading microbes. Following phagocytosis, Mtb must
continuously monitor and appropriately respond to host bactericidal activities in order to establish a safe haven
inside the macrophage's phagosome. The process by which Mtb survive inside macrophages is complex and
still poorly understood. In this application, we propose to study a novel virulence mechanism by which Mtb
hijacks the Interferon Gamma Activated Inhibitor of Translation (GAIT), a translational regulatory mechanism
normally triggered in human macrophages by host kinases to prevent excessive reactions to interferon-gamma
(IFNγ), a pro-inflammatory cytokine produced by T cells to activate antimicrobial activities in macrophages. Our
preliminary data support the hypothesis that the eukaryotic-type Ser/Thr protein kinase G (PknG) from Mtb
affects the phosphorylation status of the 60S-ribosomal subunit protein L13a, and the Glu/Pro-tRNA
synthetase, EPRS, leading to the assembly of GAIT in an IFNγ-independent manner. Experiments in Specific
Aim 1 are aimed to determine (i) the kinetics of GAIT assembly in response to mycobacterial infection, (ii) the
role of PknG in Mtb-induced GAIT assembly and (iii) the impact of PknG kinase activity on Mtb growth inside
human primary macrophages. Furthermore, experiments in Specific Aim 2 are designed to assess the impact
of Mtb's PknG-induced GAIT assembly on the bacillus' intracellular survival. Together, these proposed
experiments will elucidate the biological relevance of GAIT assembly for Mtb's survival in human
macrophages, and establish the biological importance of Mtb's ability, through its PknG, to hijack GAIT
assembly. This molecular tactic may allow Mtb to render the macrophage intracellular environment less anti-
inflammatory and antimycobacterial, to promote its own survival. Understanding such an important virulence
mechanism may help to develop novel therapeutic strategies that boost the innate anti-Mtb activities of our
immune system.
项目总结
结核病仍然是一个主要的健康问题,特别是在全球出现抗药性的情况下。
结核分支杆菌(Mtb)菌株。世界卫生组织估计,近三分之一的人
世界人口目前感染了结核分枝杆菌,使这种杆菌成为世界上最成功的病原体之一
地球。结核分枝杆菌成功的一个关键因素是它在宿主巨噬细胞内存活的能力。
已经进化出捕获和杀死入侵微生物的能力的细胞。吞噬后,结核分枝杆菌必须
持续监测和适当应对宿主杀菌活动,以建立安全避风港
在巨噬细胞的吞噬小体内。结核分枝杆菌在巨噬细胞内存活的过程是复杂的
人们对此仍知之甚少。在这个应用中,我们建议研究一种新的毒力机制,通过这种机制,结核分枝杆菌
劫持了翻译调控机制--干扰素-伽马激活的翻译抑制因子(GATIT)
通常在人类巨噬细胞中由宿主激酶触发,以防止对干扰素-γ的过度反应
干扰素γ,一种由T细胞产生的促炎细胞因子,用于激活巨噬细胞的抗菌活性。我们的
初步数据支持结核分枝杆菌真核型丝氨酸/苏氨酸蛋白激酶G(PKnG)的假说
影响60S-核糖体亚基蛋白L13a和Glu/Pro-tRNA的磷酸化状态
合成酶,Eprs,导致步态以干扰素γ不依赖的方式组装。在特定情况下的实验
目的1旨在确定(I)分枝杆菌感染后步态组装的动力学,(Ii)
PKnG在Mtb诱导的步态组装中的作用及(Iii)pKng活性对Mtb生长的影响
人原代巨噬细胞。此外,特定目标2中的实验旨在评估影响
结核分枝杆菌pnug诱导的步态组装对杆菌细胞内存活的影响。总而言之,这些建议
实验将阐明步态组合与人类多发性结核生存的生物学相关性
巨噬细胞,并确定结核分枝杆菌通过其pKNG劫持步态的能力的生物学重要性
集合。这种分子策略可能允许结核分枝杆菌使巨噬细胞内环境的抗药性降低。
发炎和抗分枝杆菌,促进自身生存。理解如此重要的致命性
机制可能有助于开发新的治疗策略,增强我们的天然抗结核分枝杆菌活性
免疫系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liem Duy Nguyen其他文献
Liem Duy Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liem Duy Nguyen', 18)}}的其他基金
GAIT complex formation and Mycobacterium tuberculosis
步态复合体的形成和结核分枝杆菌
- 批准号:
10195661 - 财政年份:2021
- 资助金额:
$ 20.13万 - 项目类别:
A Novel Folate Antagonistic Strategy to Treat Drug Resistant Pseudomonas aeruginosa and Enterobacteriaceae
治疗耐药铜绿假单胞菌和肠杆菌的新型叶酸拮抗策略
- 批准号:
8956026 - 财政年份:2015
- 资助金额:
$ 20.13万 - 项目类别:
Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
- 批准号:
8636391 - 财政年份:2010
- 资助金额:
$ 20.13万 - 项目类别:
Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
- 批准号:
7862191 - 财政年份:2010
- 资助金额:
$ 20.13万 - 项目类别:
Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
- 批准号:
8063151 - 财政年份:2010
- 资助金额:
$ 20.13万 - 项目类别:
Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
- 批准号:
8445317 - 财政年份:2010
- 资助金额:
$ 20.13万 - 项目类别:
Folate Metabolism in Mycobacterium tuberculosis Revisited: A Potential Drug Targe
重新审视结核分枝杆菌中的叶酸代谢:潜在的药物目标
- 批准号:
8240410 - 财政年份:2010
- 资助金额:
$ 20.13万 - 项目类别:
相似海外基金
Amino-acyl tRNA synthetases: investigations of tRNA specificity for application in ProxiMAX / synthetic biology.
氨酰 tRNA 合成酶:研究 tRNA 特异性在 ProxiMAX/合成生物学中的应用。
- 批准号:
BB/L015633/1 - 财政年份:2014
- 资助金额:
$ 20.13万 - 项目类别:
Training Grant














{{item.name}}会员




