Data-driven approaches to identify biomarkers from multimodal imaging big data
从多模态成像大数据中识别生物标志物的数据驱动方法
基本信息
- 批准号:10473657
- 负责人:
- 金额:$ 38.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-20 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAlgorithmsAnteriorAntidepressive AgentsAreaAttentionBackBehavioralBenchmarkingBig DataBiologicalBiological MarkersBipolar DisorderBrainBrain DiseasesBrain imagingCell NucleusClassificationClinicalClinical DataCognitiveCognitive deficitsCollaborationsCommunitiesComplementComplexCorpus CallosumDSM-IVDataData PoolingData SetDiagnosisDiagnosticDiseaseDisease remissionElectroconvulsive TherapyEngineeringFunctional disorderGenderGoalsICD-9ImageImpaired cognitionImpairmentIndividualInternationalInterventionJointsJudgmentKnowledgeMagnetic Resonance ImagingMajor Depressive DisorderManicMathematicsMeasuresMedical Care CostsMental disordersMethodsMiningModalityModelingMoodsMultimodal ImagingOutcomePatientsPharmaceutical PreparationsPharmacologyPlayPrecision Medicine InitiativeProbabilityPrognosisPsychiatric DiagnosisPsychiatryPsychosesPsychotic DisordersRecording of previous eventsRecordsRecurrenceRelapseReportingResearch PersonnelRoleSchizophreniaSeveritiesSiteStructureSupervisionSymptomsSyndromeSystemTechniquesTestingTherapeuticTimeTranslationsTreatment EfficacyTreatment outcomeValidationWorkbasebiomarker identificationcingulate cortexclinical applicationclinical careclinical practiceclinical predictorscognitive abilitycohortcommon symptomconvolutional neural networkdata miningdata sharingdeep field surveydeep learningdemographicsdepressed patientdiagnostic tooldiagnostic valuedisease classificationeffective interventionfeature selectionflexibilitygray matterhigh dimensionalityimprovedinnovationinsightlearning strategymultimodal datamultimodal neuroimagingmultimodalityneuroimagingneuroimaging markernovelopen sourceoptimal treatmentsoutcome predictionpatient subsetspersonalized carepersonalized predictionspredicting responsesupervised learningtooltranslational impacttranslational medicinetreatment responsewhite matter
项目摘要
1. PROJECT SUMMARY/ABSTRACT
The study of translational biomarkers in brain disorders is a very challenging and fruitful approach, which
will empower a better understanding of healthy and diseased brains. This project will promote the translation of
advanced engineering solutions and mathematic tools to novel neuroimaging applications in psychiatric
disorders including major depression disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ), allowing
sophisticated and powerful analyses on highly complex datasets. To date, the unifying syndrome classification
(ICD-9/10;DSM-IV/5) for these mental disorders obscures our knowledge of underlying pathophysiology and
cannot guide optimal treatments. For example, there is no biomarker that is able to precisely predict response
of MDD to some treatments. One reason for this is that most neuroimaging prediction studies to date have used
a single imaging measure or reported simple correlation relationships, without considering multimodal cross-
information, nonlinear relationships, or multi-site cross-validation. Hence, developing novel data mining
techniques such as deep learning, fusion with reference, and sparse regression can complement and exploit the
richness of neuroimaging data, providing promising avenues to identify objective biomarkers and going beyond
a descriptive use of brain imaging as traditionally used in studies of brain disease to individualized prediction.
We will facilitate the translational biomarker identification by developing 3 novel data-driven methods: 1) A
supervised fusion model that can provide insight on how cognitive impairment may affect covarying brain function
and structure in mental disorder, by using different clinical measures as a reference to guide multimodal MRI
fusion; 2) A cutting-edge prediction framework with aggregated feature selection techniques that is able to
estimate clinical outcome more precisely, e.g., remission/relapse status of individual MDD patient after
electroconvulsive treatment(ECT) using baseline brain imaging and demographic measures of 3) We will draw
on advances and ideas from deep learning combined with layer-wise relevance propagation (LRP) or attention
modules, to classify multiple groups of psychiatric disorders by incorporating dynamic functional measures. The
proposed (Deep/Recurrent/Convolutional Neural Network, DNN/RNN/CNN) models will have enhanced
interpretability that is able to trace back and discover the most predictive functional networks from input. All
above proposed methods will be applied to big data containing both multimodal imaging and behavioral
information (n~5000) pooled from existing studies, and our developed open-source toolboxes will be shared
publicly. This pioneering study may provide an urgently-needed paradigm shift in the treatment and diagnosis of
psychiatric disorders, thereby guiding personalized clinical care. Accomplishment of this project has great
potential to discover neuroimaging biomarkers that have been missed by existing approaches, leading to earlier
and more effective interventions, and laying the groundwork for a significant translational impact.
1.项目总结/摘要
翻译生物标记物在脑疾病中的研究是一种非常具有挑战性和卓有成效的方法,
将使人们更好地了解健康和患病的大脑。该项目将促进翻译
先进的工程解决方案和数学工具在精神病学中的新的神经成像应用
包括重度抑郁症(MDD)、双相情感障碍(BD)和精神分裂症(SZ)在内的疾病,允许
对高度复杂的数据集进行复杂而强大的分析。到目前为止,统一的证候分类
(ICD-9/10;DSM-IV/5)这些精神障碍使我们对潜在的病理生理学和
不能指导最佳治疗。例如,没有生物标志物能够准确地预测反应
对MDD的某些治疗。其中一个原因是,迄今为止大多数神经成像预测研究都使用了
单一成像测量或报告的简单相关关系,而不考虑多模式交叉
信息、非线性关系或多站点交叉验证。因此,开发新的数据挖掘
深度学习、参考融合和稀疏回归等技术可以补充和利用
丰富的神经影像数据,为识别客观生物标志物和超越
对脑部疾病研究中传统使用的脑成像的描述性使用,以进行个体化预测。
我们将通过开发3种新的数据驱动方法来促进翻译生物标志物的识别:1)A
有监督的融合模型,可以洞察认知障碍如何影响共同变化的大脑功能
以不同的临床措施为参照指导多模式磁共振成像
融合;2)具有聚合特征选择技术的尖端预测框架,能够
更准确地评估临床结果,例如,治疗后个别MDD患者的缓解/复发状态
使用基线脑成像和人口统计学测量的电惊厥治疗(ECT)3)我们将抽出
深度学习与层级关联传播(LRP)或注意相结合的研究进展和思路
模块,通过结合动态功能测量对多组精神障碍进行分类。这个
提出的(深度/递归/卷积神经网络,DNN/RNN/CNN)模型将得到增强
可解释性,能够从输入中追溯并发现最具预测性的功能网络。全
以上提出的方法将应用于包含多模式成像和行为的大数据
来自现有研究的信息(N~5000)和我们开发的开源工具箱将被共享
公开的。这项开创性的研究可能提供治疗和诊断方面亟需的范式转变。
精神障碍,从而指导个性化的临床护理。这项工程的完成有很大的意义
发现现有方法遗漏的神经成像生物标记物的可能性,导致更早
和更有效的干预措施,并为产生重大的翻译影响奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Sui其他文献
Jing Sui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Sui', 18)}}的其他基金
Discriminating schizophrenia from bipolar disorder by N-way multimodal fusion of
通过 N 路多模态融合区分精神分裂症和双相情感障碍
- 批准号:
8708150 - 财政年份:
- 资助金额:
$ 38.59万 - 项目类别:
Discriminating schizophrenia from bipolar disorder by N-way multimodal fusion of
通过 N 路多模态融合区分精神分裂症和双相情感障碍
- 批准号:
9108399 - 财政年份:
- 资助金额:
$ 38.59万 - 项目类别:
Discriminating schizophrenia from bipolar disorder by N-way multimodal fusion of
通过 N 路多模态融合区分精神分裂症和双相情感障碍
- 批准号:
8602556 - 财政年份:
- 资助金额:
$ 38.59万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 38.59万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 38.59万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 38.59万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 38.59万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 38.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 38.59万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 38.59万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 38.59万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 38.59万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 38.59万 - 项目类别:
Miscellaneous Programs