Circadian Clock Disruption in the Pathogenesis and Therapy of Polycystic Kidney Disease
多囊肾病发病机制和治疗中的昼夜节律紊乱
基本信息
- 批准号:10475900
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2023-03-14
- 项目状态:已结题
- 来源:
- 关键词:ARNT geneARNTL geneAcute Renal Failure with Renal Papillary NecrosisAdenineAdultAffectAgeAlzheimer&aposs DiseaseAutosomal Dominant Polycystic KidneyBehaviorBiological ProcessBlood PressureBrainBreedingCell ProliferationCellsChronic Kidney FailureChronotherapyCircadian DysregulationCircadian RhythmsCisplatinCombined Modality TherapyCystCystic kidneyDataDefectDevelopmentDiabetic NephropathyDiseaseDisease ProgressionDiurnal RhythmEnd stage renal failureEnhancersEpithelial CellsExcretory functionFDA approvedFRAP1 geneFeedbackFibrosisGene DeletionGene ExpressionGene MutationGenesGenetic TranscriptionGlomerular Filtration RateGoalsGrowthHourHumanHypertensionIn VitroInflammationInheritedKidneyKidney CalculiKidney DiseasesLife Style ModificationLightLinkLiquid substanceLiverLiver diseasesMagnetic Resonance ImagingMalignant NeoplasmsMetabolicMetabolic syndromeMolecularMotor ActivityMusMuscleMutationOutputPKD1 genePKD2 genePKD2 proteinPathogenesisPathogenicityPathologyPathway interactionsPatientsPeriodicityPharmaceutical PreparationsPharmacologyPhasePhenotypePhysiologicalPhysiologyPlasmaPolycystic Kidney DiseasesProteinsRegimenRenal functionRenal tubule structureReporterRoleSignal PathwaySignal TransductionSodium ChlorideSystemTestingTimeTime-restricted feedingTranslationsTubular formationWateradiponectinage relatedbasecircadiancircadian pacemakercryptochromeeffective therapyfeedingknockout genelipid metabolismmouse modelnobiletinnovelnovel therapeuticspolycystic kidney disease 1 proteinrestorationshift worktargeted treatmenttolvaptantranscription factortranscriptometreatment strategyurinary
项目摘要
SPECIFIC AIMS:
Polycystic Kidney Disease (PKD) is the most common inherited kidney disease that affects over 12.5 million people worldwide 1. Our long-term goal is to find effective therapies for PKD. Autosomal dominant PKD (ADPKD) is caused by mutations of PKD1 and PKD2 genes that encode for polycystin 1 and polycystin 2. The disease features development of fluid-filled cysts in the kidneys and liver, the progressive growth of which is accompanied by inflammation, fibrosis and metabolic defects, often leading to chronic kidney disease (CKD) and end stage renal disease (ESRD). Although we now have an FDA approved drug for PKD, it is critically important to develop better therapies and lifestyle modification strategies for ADPKD patients. The goal of this project is to generate preliminary data on circadian rhythm disruption in ADPKD kidneys, and identify mechanisms to target for therapy.
Circadian rhythms are intrinsic cyclical ~24-hour oscillations in behavior and physiology that coordinate the diverse biological processes with the time of day. The mammalian circadian system is built upon a cell-autonomous transcription-translation delayed feedback molecular mechanism by the clock genes. These include the transcription factors, circadian locomotor output cycles kaput (CLOCK) and brain and muscle ARNT-like protein-1 (BMAL1), which drive Cryptochrome (CRY) and Period (PER) genes, whose products inhibit CLOCK and BMAL1. Circadian rhythms regulate fundamental renal functions such as expression of transporters, tubular reabsorption, secretion, plasma flow and glomerular filtration rate. Renal functional circadian rhythms are disrupted in diabetic kidney disease, kidney stone disease and hypertension in humans, and in mouse models of adenine induced CKD and cisplatin induced acute kidney injury. Importantly, gene mutation or deletion of clock genes in mouse kidneys result in uncontrolled blood pressure and unbalanced urinary excretion of salt and water. Circadian rhythm disruption (chronodisruption) is known to drive disease progression in cancer, metabolic syndrome, liver diseases and Alzheimer’s disease. However, it is currently unknown if circadian rhythm disruptions in ADPKD contribute to disease pathology.
We made a novel observation that mouse tubular epithelial cells with PKD1 gene deletion show significant disruption in 24h circadian oscillations of core clock genes such as CLOCK, BMAL1, PER2 and CRY1, when compared to control cells. ADPKD mouse kidneys also showed significant diurnal variations in cyst-growth regulating cell signaling factors compared to WT mouse kidneys. Moreover, renal circadian clock gene expression and renal physiological diurnal rhythms were also found to be disrupted in mouse ADPKD kidneys and corresponded to increase in age and renal cyst growth. Importantly, chronotherapy using Nobiletin, a pharmacological enhancer of PER2 significantly reduced cell proliferation and cyst growth by ADPKD cells in in vitro studies. Based on these observations, we hypothesized that circadian rhythms are disrupted and promote disease progression in ADPKD and restoring the circadian rhythm can slow or stop cyst growth.
To generate preliminary data, the following aims will be accomplished:
Specific Aim 1. To determine pathogenic mechanisms underlying disruption of circadian rhythms in ADPKD kidneys and how such changes contribute to ADPKD progression.
Studies will identify differences in periodicity of expression of clock genes between WT and Pkd1RC/RC mouse kidneys. The role of adiponectin-AMPK-mTOR pathway will be examined as a pathogenic cell signaling pathway for circadian disruption in the ADPKD kidney, and possible links to fat metabolism will be examined. To determine if such changes contribute ADPKD progression, selected genes and cell signaling mechanisms will be examined in chronodisruption studies.
Specific Aim 2. To determine if chronodisruption contributes to phenotypic change or disease progression in ADPKD.
We propose to examine the effect of renal tubule-specific gene knockout of BMAL1, (an important clock gene) in ADPKD mice. PKD1RC/RC-BMAL1f/f-PkhD1cre mouse will be generated by breeding PKD1RC/RC mice with BMAL1f/f mice and PkhD1cre mice. Age dependent changes in disease progression will be characterized to determine the effect of BMAl1 gene deletion (chronodisruption) on ADPKD progression early during cyst growth.
具体目标:
多囊肾病 (PKD) 是最常见的遗传性肾脏疾病,影响全球超过 1,250 万人1。我们的长期目标是找到治疗 PKD 的有效疗法。常染色体显性多囊肾 (ADPKD) 是由编码多囊蛋白 1 和多囊蛋白 2 的 PKD1 和 PKD2 基因突变引起的。该疾病的特点是肾脏和肝脏中出现充满液体的囊肿,囊肿的进行性生长伴有炎症、纤维化和代谢缺陷,通常导致慢性肾脏病 (CKD) 和终末期肾病 (终末期肾病)。尽管我们现在有 FDA 批准的治疗 PKD 的药物,但为 ADPKD 患者开发更好的治疗方法和生活方式改变策略至关重要。该项目的目标是生成 ADPKD 肾脏昼夜节律紊乱的初步数据,并确定治疗的目标机制。
昼夜节律是行为和生理学中内在的 24 小时周期性振荡,它协调不同的生物过程与一天中的时间。哺乳动物的昼夜节律系统建立在时钟基因的细胞自主转录翻译延迟反馈分子机制之上。其中包括转录因子、昼夜节律运动输出周期卡普特 (CLOCK) 以及大脑和肌肉 ARNT 样蛋白 1 (BMAL1),它们驱动隐花色素 (CRY) 和周期 (PER) 基因,其产物抑制 CLOCK 和 BMAL1。昼夜节律调节基本肾功能,例如转运蛋白的表达、肾小管重吸收、分泌、血浆流量和肾小球滤过率。在人类糖尿病肾病、肾结石病和高血压以及腺嘌呤诱导的 CKD 和顺铂诱导的急性肾损伤的小鼠模型中,肾功能昼夜节律被破坏。重要的是,小鼠肾脏中的基因突变或时钟基因缺失会导致血压失控以及盐和水的尿液排泄不平衡。众所周知,昼夜节律紊乱(时间紊乱)会导致癌症、代谢综合征、肝脏疾病和阿尔茨海默氏病的疾病进展。然而,目前尚不清楚 ADPKD 的昼夜节律紊乱是否会导致疾病病理。
我们进行了一项新的观察,即与对照细胞相比,PKD1 基因缺失的小鼠肾小管上皮细胞的核心时钟基因(如 CLOCK、BMAL1、PER2 和 CRY1)的 24 小时昼夜节律振荡显着受到破坏。与 WT 小鼠肾脏相比,ADPKD 小鼠肾脏的囊肿生长调节细胞信号传导因子也表现出显着的昼夜变化。此外,还发现 ADPKD 小鼠肾脏中的肾脏生物钟基因表达和肾脏生理昼夜节律被破坏,并且与年龄的增加和肾囊肿的生长相对应。重要的是,在体外研究中,使用川陈皮素(PER2 的药理增强剂)进行时间疗法可显着减少 ADPKD 细胞的细胞增殖和囊肿生长。基于这些观察,我们假设昼夜节律被破坏并促进 ADPKD 的疾病进展,而恢复昼夜节律可以减缓或阻止囊肿生长。
为了生成初步数据,将实现以下目标:
具体目标 1. 确定 ADPKD 肾脏昼夜节律紊乱的致病机制以及这些变化如何导致 ADPKD 进展。
研究将确定 WT 和 Pkd1RC/RC 小鼠肾脏之间时钟基因表达周期的差异。将检查脂联素-AMPK-mTOR 通路作为 ADPKD 肾脏昼夜节律破坏的致病细胞信号通路的作用,并将检查与脂肪代谢的可能联系。为了确定这些变化是否会导致 ADPKD 进展,将在时间破坏研究中检查选定的基因和细胞信号传导机制。
具体目标 2. 确定时间紊乱是否会导致 ADPKD 的表型变化或疾病进展。
我们建议检查肾小管特异性基因敲除 BMAL1(一种重要的时钟基因)对 ADPKD 小鼠的影响。 PKD1RC/RC-BMAL1f/f-PkhD1cre 小鼠将通过 PKD1RC/RC 小鼠与 BMAL1f/f 小鼠和 PkhD1cre 小鼠交配而产生。将表征疾病进展中的年龄依赖性变化,以确定囊肿生长期间BMAl1基因缺失(时间紊乱)对ADPKD早期进展的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reena Rao其他文献
Reena Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reena Rao', 18)}}的其他基金
Pathogenic reciprocal interplay between cyst epithelium and myofibroblasts in polycystic kidney disease
多囊肾病中囊肿上皮和肌成纤维细胞之间的致病相互作用
- 批准号:
10608350 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Regulation of Renal Response to Vasopressin by Glycogen Synthase
糖原合酶调节肾脏对加压素的反应
- 批准号:
8897355 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Regulation of Renal Response to Vasopressin by Glycogen Synthase
糖原合酶调节肾脏对加压素的反应
- 批准号:
8042365 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Regulation of Renal Response to Vasopressin by Glycogen Synthase
糖原合酶调节肾脏对加压素的反应
- 批准号:
8725137 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Regulation of Renal Response to Vasopressin by Glycogen Synthase
糖原合酶调节肾脏对加压素的反应
- 批准号:
8541003 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Regulation of Renal Response to Vasopressin by Glycogen Synthase
糖原合酶调节肾脏对加压素的反应
- 批准号:
8926130 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Regulation of Renal Response to Vasopressin by Glycogen Synthase
糖原合酶调节肾脏对加压素的反应
- 批准号:
8331459 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:














{{item.name}}会员




