Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
基本信息
- 批准号:10636536
- 负责人:
- 金额:$ 62.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenAccident and Emergency departmentAddressAdipose tissueAdultAffectAlgorithmsAmericanAortaAtherosclerosisBody CompositionCardiologyCardiovascular Diagnostic TechniquesCardiovascular DiseasesCardiovascular systemCessation of lifeClassificationClinicClinicalComputed Tomography ScannersComputerized Medical RecordDataData SetDetectionEarly DiagnosisEligibility DeterminationEnsureEquationEquityEthnic OriginEventExhibitsFutureGoalsImageInsuranceInterventionLabelLiverMeasuresMedical ImagingMethodsModelingMorbidity - disease rateMorphologic artifactsMuscleMyocardial InfarctionMyocardial IschemiaPatient riskPatientsPerformancePhenotypePilot ProjectsPopulationPopulation HeterogeneityPrimary PreventionProtocols documentationQuality ControlRaceRadiationRadiology SpecialtyReaderRecommendationRecording of previous eventsRiskRisk EstimateScanningSiteStrokeSubgroupTechniquesTestingThree-Dimensional ImagingTissuesTrainingUncertaintyValidationVariantVascular calcificationWorkX-Ray Computed Tomographyabdominal CTautomated segmentationboneburden of illnesscalcificationcardiometabolic riskcardiometabolismcardiovascular disorder preventioncardiovascular disorder riskcardiovascular healthcohortcomorbiditycontrast enhanced computed tomographycostdeep learningdeep learning algorithmdeep learning modeldigital twinearly screeningefficacious treatmenthealth equityheart disease riskhigh riskimaging studyimprovedinnovationlearning strategylifestyle interventionmortalitymultimodal datamultimodalitypatient stratificationpatient subsetspharmacologicpredictive modelingpreventquantitative imagingradiologistrisk predictionsegmentation algorithmsocioeconomicsstatisticsstroke eventsuccesssupervised learningtool
项目摘要
PROJECT SUMMARY
Atherosclerotic cardiovascular disease (ASCVD) is the main cause of morbidity and mortality worldwide, and
affects 18+ million adults nationally. However, 80% of ASCVD deaths may be prevented with prompt intervention
following early screening for ASCVD risk – a powerful rationale for the unmet need of accurate subclinical
ASCVD diagnoses. Thus, in this study we assess whether a deep learning (DL)-based analysis of pre-existing
abdominal computed tomography (CT) scans paired with electronic medical records (EMR) improves prediction
of cardiovascular death, myocardial infarction, and stroke in a large multi-site primary prevention population. We
will conduct this study in a large, diverse, real-world population with an external validation to ascertain whether
we can improve upon the clinically-utilized pooled cohort equations (PCE) that have numerous shortcomings.
20+ million abdominal CT scans performed annually in the US. While these scans answer specific clinical
questions, quantitative information related to tissue phenotypes associated with cardiometabolic risk is simply
not evaluated. DL algorithms can be used to quantify body composition metrics for adipose tissue, muscle, bone,
liver, and vascular calcifications, which can all be used to improve upon the PCE for determining cardiovascular
events. In aim 1 of our proposal, we will build automated segmentation algorithms with a built-in quality control
mechanism to extract these body composition metrics in 125,000+ diverse subjects to ascertain population-level
normative values of tissue size and radiodensity. In aim 2, we will augment the PCE covariates with these body
composition values and additional EMR features for predicting ASCVD risk with advanced DL models. Moreover,
we will devise new algorithmic approaches for improving health equity by ensuring similar model performance
across patient sub-groups of PCE eligibility, race/ethnicity, insurance type, and CT scanner make/model. In aim
3, we will build a new ASCVD risk estimator that directly uses 3D imaging data. We will augment this end-to-end
prediction approach by integrating multi-modal models that leverage both imaging data and EMR data. Realizing
the need for improved explainability of DL solutions, we will build digital twins of each subject to describe why
model predictions are being made and what changes a patient could make to lower ASCVD risk.
We will train all models on data from Stanford (25k patients), test on data from Stanford (8k patients), and
externally validate the models on data from three Mayo Clinic sites (20k+ patients) to assess the generalizability
of our tools. We have assembled an inter-disciplinary MPI team of DL experts, cardiologists, and abdominal
radiologists to build such ASCVD risk models. We develop innovative tools to improve accuracy, generalizability,
bias, and explainability of DL-based ASCVD risk models. Our long-term goal is to enable early detection of silent
atherosclerosis and trigger interventions that may ultimately prevent over 800,000 death, myocardial infarction,
and stroke events in diverse Americans annually.
项目总结
动脉粥样硬化性心血管疾病(ASCVD)是全球发病率和死亡率的主要原因,
全国有1800多万成年人受到影响。然而,80%的ASCVD死亡可以通过及时的干预来预防
在对ASCVD风险进行早期筛查后--准确的亚临床需求未得到满足的有力理由
ASCVD诊断。因此,在这项研究中,我们评估基于深度学习(DL)的分析是否预先存在
腹部计算机断层扫描(CT)与电子病历(EMR)相结合可以提高预测能力
在一个大型多地点一级预防人群中,心血管死亡、心肌梗死和中风的风险。我们
将在大量不同的现实世界人群中进行这项研究,并进行外部验证,以确定
我们可以改进临床上使用的集合队列方程(PCE),它有许多缺点。
在美国,每年有2000多万例腹部CT扫描。当这些扫描回答特定的临床问题时
问题,与心脏代谢风险相关的组织表型的定量信息很简单
未评估。DL算法可用于量化脂肪组织、肌肉、骨骼、
肝脏和血管钙化,这些都可以用来改善PCE以确定心血管疾病
事件。在我们提案的目标1中,我们将构建具有内置质量控制的自动分割算法
在125,000多个不同的受试者中提取这些身体组成指标的机制,以确定人口水平
组织大小和放射密度的标准值。在目标2中,我们将使用这些主体来增加PCE协变量
使用高级DL模型预测ASCVD风险的合成值和其他EMR功能。此外,
我们将设计新的算法方法,通过确保类似的模型性能来改善健康公平
跨PCE资格、种族/民族、保险类型和CT扫描仪制造商/型号的患者子组。在AIM
3、我们将建立一个新的ASCVD风险估计器,直接使用3D成像数据。我们将增强这一端到端功能
通过集成利用成像数据和电子病历数据的多模式模型来进行预测。实现
为了提高数字图书馆解决方案的可解释性,我们将构建每个主题的数字双胞胎来描述原因
目前正在进行模型预测,以及患者可以做出哪些改变来降低ASCVD风险。
我们将根据斯坦福大学的数据(25000名患者)训练所有模型,测试斯坦福大学的数据(8000名患者),以及
使用三个Mayo诊所站点(20K以上患者)的数据对模型进行外部验证,以评估模型的泛化能力
我们的工具。我们已经组建了一个由DL专家、心脏病专家和腹部专家组成的跨学科MPI团队
放射科医生建立这样的ASCVD风险模型。我们开发创新的工具来提高精确度、通用性、
基于DL的ASCVD风险模型的偏倚和可解释性。我们的长期目标是能够及早发现静音
动脉粥样硬化和触发干预措施,最终可能防止超过80万人死亡,心肌梗死,
每年在不同的美国人中发生中风事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akshay Chaudhari其他文献
Akshay Chaudhari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Contributions of cell behaviours to dorsal closure in Drosophila abdomen
细胞行为对果蝇腹部背侧闭合的贡献
- 批准号:
2745747 - 财政年份:2022
- 资助金额:
$ 62.27万 - 项目类别:
Studentship
Using the GI Tract as a Window to the Autonomic Nervous System in the Thorax and in the Abdomen
使用胃肠道作为胸部和腹部自主神经系统的窗口
- 批准号:
10008166 - 财政年份:2018
- 资助金额:
$ 62.27万 - 项目类别:
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
- 批准号:
18K18364 - 财政年份:2018
- 资助金额:
$ 62.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined motion-compensated and super-resolution image reconstruction to improve magnetic resonance imaging of the upper abdomen
结合运动补偿和超分辨率图像重建来改善上腹部的磁共振成像
- 批准号:
1922800 - 财政年份:2017
- 资助金额:
$ 62.27万 - 项目类别:
Studentship
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P013309/1 - 财政年份:2017
- 资助金额:
$ 62.27万 - 项目类别:
Research Grant
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P012434/1 - 财政年份:2017
- 资助金额:
$ 62.27万 - 项目类别:
Research Grant
Relationship between touching the fetus via the abdomen of pregnant women and fetal attachment based on changes in oxytocin levels
基于催产素水平变化的孕妇腹部触摸胎儿与胎儿附着的关系
- 批准号:
16K12096 - 财政年份:2016
- 资助金额:
$ 62.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design Research of Healthcare System based on the Suppleness of Upper Abdomen
基于上腹部柔软度的保健系统设计研究
- 批准号:
16K00715 - 财政年份:2016
- 资助金额:
$ 62.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2015
- 资助金额:
$ 62.27万 - 项目类别:
Postdoctoral Fellowships
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2014
- 资助金额:
$ 62.27万 - 项目类别:
Postdoctoral Fellowships