PITPNA in pancreatic beta-cell dysfunction and diabetes pathogenesis
PITPNA 在胰腺 β 细胞功能障碍和糖尿病发病机制中的作用
基本信息
- 批准号:10636228
- 负责人:
- 金额:$ 41.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:1-Phosphatidylinositol 4-KinaseBeta CellCell DeathCell FractionationCell membraneCell physiologyCellsChronicCytoplasmic GranulesDataDefectDevelopmentDiabetes MellitusDockingEndoplasmic ReticulumExocytosisFailureFunctional disorderHeat shock proteinsHumanHyperglycemiaImpairmentIndividualInsulinInsulin ResistanceIntracellular MembranesIslets of LangerhansLinkLoxP-flanked alleleMembraneMethodsMitochondriaMorphologyMusNon-Insulin-Dependent Diabetes MellitusOxidative StressPancreasPathway interactionsPhosphatidylinositol Transfer ProteinPhosphatidylinositolsPhospholipidsPhosphorylationProductionProinsulinRoleSecretory VesiclesStructure of beta Cell of isletTestingdiabetes pathogenesisendoplasmic reticulum stresshuman subjectimprovedinnovationinsulin granuleinsulin secretionisletknock-downmitochondrial dysfunctionmitochondrial membranenovel strategiespharmacologicphosphatidylinositol 4-phosphatepreventrestorationtrans-Golgi Network
项目摘要
PROJECT SUMMARY
Critical to successful innovation in treating diabetes is the development of strategies for promoting insulin
release and preventing pancreatic beta-cell destruction. Chronic demand for insulin production during insulin
resistance and diabetes exacerbates cell dysfunction and this is compounded by ER and oxidative stress. This
results in beta-cell death and loss of insulin production. Recent studies have highlighted defects in insulin
processing, insulin granule maturation, and granule docking that are also linked to all major forms of diabetes;
however conceptual gaps remain in understanding the causes of beta-cell failure and developing methods to
reverse or prevent beta-cell dysfunction.
Our preliminary studies establish Phosphatidylinositol transfer protein alpha (referred to as human
PITPNA and mouse Pitpna), as a major regulator of insulin granule formation and secretion. PITPNA shuttles
phosphatidylinositol (PI) from the endoplasmic reticulum (ER) to the trans-Golgi network (TGN) for
phosphorylation by Phosphatidylinositol 4-kinase (PI4-K) conversion to phosphatidylinositol-4 phosphate
(PtdIns-4-P), an abundant membrane phospholipid involved in insulin granule docking and exocytosis. Our
preliminary data shows: 1) PITPNA expression is dramatically silenced in beta-cells of human T2D subjects, 2)
reduction of PITPNA in human islets both lowered cellular PI4-P levels and insulin granule maturation and
increased accumulation of proinsulin, and 3) conditional beta-cell specific deletion of Pitpna in mice (Ins-Cre;
Pitpnaflox/flox) results in decreased insulin secretion and beta-cell mass, random-fed hyperglycemia, and increased
expression of ER stress proteins in beta cells.
Based on these data, we hypothesize that decreased PITPNA in beta-cells during T2D leads to lower
PI4-P for distribution by the TGN as well as incorporation into insulin granules, thereby disrupting granule
maturation, docking and secretion. We further hypothesize the reduced granule formation results in accumulation
of proinsulin in the ER, leading to ER stress and ultimately beta-cell death. We propose that restoration of
PITPNA in beta-cells of T2D individuals will reverse these aspects of cellular dysfunction. We expect these
studies will demonstrate that promoting PITPNA function and PI4-P formation is a novel strategy for reversing
beta-cell dysfunction in several subcellular compartments including the ER, mitochondria, and the TGN. These
studies aim to highlight restoration of PI4-P between intracellular membranes as an innovative approach for
increasing granule maturation and secretion as well as reversing beta-cell failure in major forms of diabetes.
项目摘要
糖尿病治疗创新成功的关键是开发促进胰岛素的策略
释放并防止胰腺β细胞破坏。胰岛素治疗期间对胰岛素产生的慢性需求
抵抗和糖尿病加剧了细胞功能障碍,这是由ER和氧化应激复合。这
导致β细胞死亡和胰岛素产生的损失。最近的研究强调了胰岛素的缺陷
加工、胰岛素颗粒成熟和颗粒对接也与所有主要形式的糖尿病有关;
然而,在理解β细胞衰竭的原因和开发方法方面仍然存在概念上的差距,
逆转或预防β细胞功能障碍。
我们的初步研究建立了磷脂酰肌醇转移蛋白α(称为人源性),
PITPNA和小鼠Pitpna),作为胰岛素颗粒形成和分泌的主要调节剂。PITPNA穿梭巴士
磷脂酰肌醇(PI)从内质网(ER)到高尔基体网络(TGN),
通过磷脂酰肌醇4-激酶(PI 4-K)转化为磷脂酰肌醇-4磷酸的磷酸化
(PtdIns-4-P),一种丰富的膜磷脂,参与胰岛素颗粒对接和胞吐作用。我们
初步数据显示:1)PITPNA表达在人T2 D受试者的β-细胞中显著沉默,2)
人胰岛中PITPNA的减少既降低了细胞PI 4-P水平,也降低了胰岛素颗粒成熟,
增加胰岛素原的积累,和3)小鼠中Pitpna的条件性β细胞特异性缺失(Ins-Cre;
Pitpnaflox/flox)导致胰岛素分泌和β细胞质量降低、随机喂养的高血糖症,
ER应激蛋白在β细胞中的表达。
基于这些数据,我们假设T2 D期间β细胞中PITPNA的减少导致T2 D细胞中PITPNA的降低。
PI 4-P用于通过TGN分布以及掺入胰岛素颗粒,从而破坏颗粒
成熟、对接和分泌。我们进一步假设颗粒形成减少导致蓄积
胰岛素原在内质网中的作用,导致内质网应激并最终导致β细胞死亡。我们建议恢复
T2 D个体的β细胞中的PITPNA将逆转细胞功能障碍的这些方面。我们预计这些
研究表明,促进PITPNA功能和PI 4-P形成是逆转PI 4-P表达的新策略。
包括ER、线粒体和TGN在内的几个亚细胞区室中的β细胞功能障碍。这些
研究旨在强调细胞内膜之间PI 4-P的恢复作为一种创新方法,
增加颗粒成熟和分泌以及逆转主要形式的糖尿病中的β细胞衰竭。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Ng Poy其他文献
Matthew Ng Poy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Interrogating the ubiquitin pathway to understand and treat cytokine-induced beta-cell death in type 1 diabetes
探究泛素通路以了解和治疗 1 型糖尿病中细胞因子诱导的 β 细胞死亡
- 批准号:
10278303 - 财政年份:2021
- 资助金额:
$ 41.56万 - 项目类别:
Interrogating the ubiquitin pathway to understand and treat cytokine-induced beta-cell death in type 1 diabetes
探究泛素通路以了解和治疗 1 型糖尿病中细胞因子诱导的 β 细胞死亡
- 批准号:
10477373 - 财政年份:2021
- 资助金额:
$ 41.56万 - 项目类别:
iPLA2beta-mediated alternative splicing and beta-cell death in type 1 diabetes
iPLA2beta 介导的 1 型糖尿病中的选择性剪接和 β 细胞死亡
- 批准号:
10594556 - 财政年份:2021
- 资助金额:
$ 41.56万 - 项目类别:
Interrogating the ubiquitin pathway to understand and treat cytokine-induced beta-cell death in type 1 diabetes
探究泛素通路以了解和治疗 1 型糖尿病中细胞因子诱导的 β 细胞死亡
- 批准号:
10668435 - 财政年份:2021
- 资助金额:
$ 41.56万 - 项目类别:
iPLA2beta-mediated alternative splicing and beta-cell death in type 1 diabetes
iPLA2beta 介导的 1 型糖尿病中的选择性剪接和 β 细胞死亡
- 批准号:
10554009 - 财政年份:2021
- 资助金额:
$ 41.56万 - 项目类别:
Immune responses to islet amyloid in beta-cell death
β细胞死亡中对胰岛淀粉样蛋白的免疫反应
- 批准号:
9906043 - 财政年份:2019
- 资助金额:
$ 41.56万 - 项目类别:
Immune responses to islet amyloid in beta-cell death
β细胞死亡中对胰岛淀粉样蛋白的免疫反应
- 批准号:
10265389 - 财政年份:2019
- 资助金额:
$ 41.56万 - 项目类别:
Immune responses to islet amyloid in beta-cell death
β细胞死亡中对胰岛淀粉样蛋白的免疫反应
- 批准号:
10454224 - 财政年份:2019
- 资助金额:
$ 41.56万 - 项目类别:
Immune responses to islet amyloid in beta-cell death
β细胞死亡中对胰岛淀粉样蛋白的免疫反应
- 批准号:
10618288 - 财政年份:2019
- 资助金额:
$ 41.56万 - 项目类别:
Contribution of Dioxin-Like Chemicals to Beta Cell Death and Dysfunction in Diabetes
二恶英类化学物质对糖尿病β细胞死亡和功能障碍的影响
- 批准号:
381017 - 财政年份:2018
- 资助金额:
$ 41.56万 - 项目类别:
Operating Grants