Structural Mechanisms Of Genome Flow In Bacteriophage T4 And Their Biomedical Applications
噬菌体T4基因组流动的结构机制及其生物医学应用
基本信息
- 批准号:10635661
- 负责人:
- 金额:$ 48.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-15 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:Archaeal VirusesBacteriophage T4BacteriophagesBindingBiochemistryCapsidCategoriesCellsCessation of lifeComplexCryoelectron MicroscopyDNADNA PackagingDNA StructureDataData CollectionDefectDegenerative DisorderDiseaseDockingDuchenne muscular dystrophyDystrophinExperimental DesignsFutureGene DeliveryGenesGeneticGenomeHeadHumanIn VitroIndividualInfectionInterdisciplinary StudyInvestigationKnowledgeLengthLentivirusLife Cycle StagesLigandsMeasuresModelingMolecularMolecular ConformationMotorMuscleMuscle CellsMuscular DystrophiesMyopathyNanovirusNeckOrganismPhasePhysical condensationPlanet EarthPositioning AttributePreparationProcessProteinsRegulationReporter GenesResearchResearch ProposalsResolutionSeriesStructureSurfaceSystemTailTherapeuticTimeTranslatingTranslational ResearchTranslationsTubeViralViral GenomeVirusconformational conversiondelivery vehicledensitydesignds-DNAeffective therapyexperimental studyextracellulargene therapygenetic payloadhuman diseaseimprovedin vivoinnovationmouse modelmuscular dystrophy mouse modelmutantnanocapsidnanomachinenanoparticlenanoparticle deliverynovelnucleic acid binding proteinpressureprotein complexreconstructionsealtargeted deliverytherapeutic genevectorvirology
项目摘要
This proposal aims to fill a critical knowledge gap in the assembly of icosahedral viruses; mechanisms and
controls by which a viral genome flows into and out of a virus capsid with high precision and fidelity. The tailed
dsDNA bacteriophage T4 is our model virus. The proposal will also translate this basic knowledge into a gene
therapy for muscular dystrophy, a debilitating degenerative muscular disease that causes early death.
We propose an innovative experimental design by advancing a novel “molecular valve” hypothesis. The
hypothesis states that a sophisticated molecular valve at the unique portal vertex controls genome flow into
and out of a virus capsid through dynamic structural and conformational changes.
By integrating genetics, biochemistry, and cryo-electron microscopy, we will generate a series of
asymmetric reconstructions of nanomachines in different structural and conformational states. These machines
translocate genome into virus capsid creating a pressurized condensate (inward genome flow), arrest genome
flow and position for delivery, and allow genome ejection upon encountering new host (outward genome flow).
In specific aim 1, we will generate atomic level structures of the DNA packaging machine consisting of
the portal vertex-bound packaging motor and its intermediate states during active translocation. A detailed
packaging mechanism will be formulated that will have broad implications to phages, eukaryotic and archaeal
viruses including herpes and adeno viruses. A strong work-flow has been established for preparation and data
collection of packaging complexes using a newly constructed super-charged “acidic capsid” mutant. In specific
aim 2, we will elucidate the dynamic mechanism of the neck-connector valve complex bound to portal by
generating structures in different assembly states. These structures would illustrate conformational changes in
the valve complex that lead to arrest of genome flow post-packaging and position it for delivery following tail
docking. We present a novel discovery involving the participation of a host nucleic acid binding protein Hfq in
these dynamic transactions. In specific aim 3, we will probe the mechanism of genome ejection by asymmetric
cryo-EM reconstructions of the genome ejection machine pre-infection, during-infection, and post-infection. A
preliminary cryo-EM reconstruction revealed, for the first time, density for a helical tape measure protein-DNA
complex in the innermost core of the ejection tube. In specific aim 4, we will incorporate the basic knowledge
gained from specific aims 1-3 to establish a novel, large capacity, T4 gene therapy vehicle to deliver the full-
length ~11-kb dystrophin gene into human muscle cells as well as into a muscular dystrophy mouse model.
Relying on our 42-years of expertise on T4 phage assembly and genome packaging, our synergistic
research team will uncover the basic mechanisms of genome flow in viruses and their translation into potentially
transformative phage-based gene therapeutics. These will have broad implications to virology and human
disease therapies.
该建议旨在填补二十面体病毒组装的关键知识空白;机制和
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venigalla B. Rao其他文献
T4DNAパッケージング蛋白質gp16およびgp17の相互作用の解析
T4DNA包装蛋白gp16和gp17之间的相互作用分析
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
藤田大悟;金丸周司;Venigalla B. Rao;有坂文雄 - 通讯作者:
有坂文雄
Effect of ATPase-Defective Mutant Doping on Functionality and Dynamics of Single Bacteriophage T4 DNA Packaging Motors
- DOI:
10.1016/j.bpj.2020.11.398 - 发表时间:
2021-02-12 - 期刊:
- 影响因子:
- 作者:
Suoang Lu;Vishal I. Kottadiel;Li Dai;Digvijay Singh;Taekjip Ha;Venigalla B. Rao;Yann R. Chemla - 通讯作者:
Yann R. Chemla
Regulation of a Viral Packaging Motor's Grips on DNA
- DOI:
10.1016/j.bpj.2017.11.542 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Mariam Ordyan;Douglas E. Smith;Venigalla B. Rao;Istiaq Alam;Marthandan Mahalingam - 通讯作者:
Marthandan Mahalingam
Analyzing DNA Packaging Initiation of Bacteriophage T4 by a Real-Time Single Molecule Fluorescence Assay
- DOI:
10.1016/j.bpj.2011.11.3497 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Reza Vafabakhsh;Kiran Kondabagil;Li Dai;Zhihong Zhang;Venigalla B. Rao;Taekjip Ha - 通讯作者:
Taekjip Ha
Venigalla B. Rao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venigalla B. Rao', 18)}}的其他基金
Single Dose, Multivalent, Anthrax Plague Vaccines using Bacteriophage T4 Nanopart
使用噬菌体 T4 Nanopart 的单剂量、多价炭疽鼠疫疫苗
- 批准号:
8819513 - 财政年份:2014
- 资助金额:
$ 48.48万 - 项目类别:
Single Dose, Multivalent, Anthrax Plague Vaccines using Bacteriophage T4 Nanopart
使用噬菌体 T4 Nanopart 的单剂量、多价炭疽鼠疫疫苗
- 批准号:
9000614 - 财政年份:2014
- 资助金额:
$ 48.48万 - 项目类别:
Single Dose, Multivalent, Anthrax Plague Vaccines using Bacteriophage T4 Nanopart
使用噬菌体 T4 Nanopart 的单剂量、多价炭疽鼠疫疫苗
- 批准号:
8694624 - 财政年份:2014
- 资助金额:
$ 48.48万 - 项目类别:
Potent Phage T4 Derived V2 Immunogens as HIV Vaccines
有效的噬菌体 T4 衍生 V2 免疫原作为 HIV 疫苗
- 批准号:
8494569 - 财政年份:2012
- 资助金额:
$ 48.48万 - 项目类别:
Potent Phage T4 Derived V2 Immunogens as HIV Vaccines
有效的噬菌体 T4 衍生 V2 免疫原作为 HIV 疫苗
- 批准号:
8868023 - 财政年份:2012
- 资助金额:
$ 48.48万 - 项目类别:
Potent Phage T4 Derived V2 Immunogens as HIV Vaccines
有效的噬菌体 T4 衍生 V2 免疫原作为 HIV 疫苗
- 批准号:
8685883 - 财政年份:2012
- 资助金额:
$ 48.48万 - 项目类别:
Potent Phage T4 Derived V2 Immunogens as HIV Vaccines
有效的噬菌体 T4 衍生 V2 免疫原作为 HIV 疫苗
- 批准号:
8410257 - 财政年份:2012
- 资助金额:
$ 48.48万 - 项目类别:
Multivalent Plague, Anthrax Vaccines Using Bacteriophage T4 Display
使用噬菌体 T4 展示多价鼠疫、炭疽疫苗
- 批准号:
8435493 - 财政年份:2009
- 资助金额:
$ 48.48万 - 项目类别:
Multivalent Plague, Anthrax Vaccines Using Bacteriophage T4 Display
使用噬菌体 T4 展示多价鼠疫、炭疽疫苗
- 批准号:
7644596 - 财政年份:2009
- 资助金额:
$ 48.48万 - 项目类别:
Engineering a packaging nanomotor for delivery of RNA and other molecules
设计用于递送 RNA 和其他分子的包装纳米马达
- 批准号:
7904763 - 财政年份:2009
- 资助金额:
$ 48.48万 - 项目类别:
相似国自然基金
肌尾噬菌体T4的冷冻电镜结构和基因组释放机制研究
- 批准号:32371285
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Rapid Generation of Vaccine Candidates Against Novel Coronavirus (SARS-CoV-2) Using the Bacteriophage T4 Nanoparticle Platform
使用噬菌体 T4 纳米颗粒平台快速生成针对新型冠状病毒 (SARS-CoV-2) 的候选疫苗
- 批准号:
10265803 - 财政年份:2020
- 资助金额:
$ 48.48万 - 项目类别:
Mechanism of Genome Packaging in Bacteriophage T4
噬菌体 T4 基因组包装机制
- 批准号:
1817709 - 财政年份:2018
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
Modification of bacteriophage T4 host range by engineering of tail fibers
通过尾部纤维改造噬菌体 T4 宿主范围
- 批准号:
497533-2016 - 财政年份:2016
- 资助金额:
$ 48.48万 - 项目类别:
University Undergraduate Student Research Awards
A Novel Mucosal Vaccine Delivery System Using Bacteriophage T4 Nanoparticles
使用噬菌体 T4 纳米颗粒的新型粘膜疫苗输送系统
- 批准号:
8981493 - 财政年份:2015
- 资助金额:
$ 48.48万 - 项目类别:
A Novel Mucosal Vaccine Delivery System Using Bacteriophage T4 Nanoparticles
使用噬菌体 T4 纳米颗粒的新型粘膜疫苗输送系统
- 批准号:
9093573 - 财政年份:2015
- 资助金额:
$ 48.48万 - 项目类别:
Single Dose, Multivalent, Anthrax Plague Vaccines using Bacteriophage T4 Nanopart
使用噬菌体 T4 Nanopart 的单剂量、多价炭疽鼠疫疫苗
- 批准号:
8819513 - 财政年份:2014
- 资助金额:
$ 48.48万 - 项目类别:
CDS&E/Collaborative Research: Exposing the Injection Machinery Dynamics of Bacteriophage T4 through Multi-Scale Modeling
CDS
- 批准号:
1404818 - 财政年份:2014
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
Single Dose, Multivalent, Anthrax Plague Vaccines using Bacteriophage T4 Nanopart
使用噬菌体 T4 Nanopart 的单剂量、多价炭疽鼠疫疫苗
- 批准号:
9000614 - 财政年份:2014
- 资助金额:
$ 48.48万 - 项目类别:
Single Dose, Multivalent, Anthrax Plague Vaccines using Bacteriophage T4 Nanopart
使用噬菌体 T4 Nanopart 的单剂量、多价炭疽鼠疫疫苗
- 批准号:
8694624 - 财政年份:2014
- 资助金额:
$ 48.48万 - 项目类别:
CDS&E/Collaborative Research: Exposing the Injection Machinery Dynamics of Bacteriophage T4 through Multi-Scale Modeling
CDS
- 批准号:
1404747 - 财政年份:2014
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant