Project 4: Mechanistic Basics of FLASH Effect: Role of O2
项目 4:FLASH 效应的机械基础知识:O2 的作用
基本信息
- 批准号:10415036
- 负责人:
- 金额:$ 40.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdjuvantAnimal ModelAnimalsBiochemicalBiologicalBiological MarkersBloodBrain NeoplasmsBreathingCancer SurvivorCarbogenCarbon DioxideCell RespirationCellular Metabolic ProcessClinicalClinical TrialsDataDevelopmentDoseDose-RateElectronsExposure toFerritinFree RadicalsHydrogen PeroxideInflammatory ResponseIonsLeadLipid PeroxidationMalignant NeoplasmsMalignant neoplasm of brainMeasurementMediatingMetabolismMetalsModelingMorbidity - disease rateMorphologyNeurocognitiveNeuronsNormal CellNormal tissue morphologyOutcomeOxidation-ReductionOxidative StressOxygenPharmacologyPhotonsRadiationRadiation PhysicsRadiation therapyRadiochemistryReactionRoleStress TestsTestingTherapeuticTherapeutic IndexTimeTissuesTreatment EfficacyTumor Tissueanimal tissueascorbatebasebrain tissuecancer cellcancer therapychemoradiationcostfunctional outcomesgenetic approachgenetic manipulationglutathione peroxidaseimprovedinnovationiron metabolismirradiationmetal chelatormortalitymouse modeloverexpressionpreservationresponsetissue injurytumor
项目摘要
Project Summary/Abstract - Project 4: Mechanistic Basics of FLASH Effect: Role of O2
Recently, exciting and unexpected new data in several animal models strongly supports the premise that ultra-
high dose rate irradiation termed FLASH radiotherapy (FLASH-RT) can result in significant sparing of normal
tissue while preserving tumor responses, effectively leading to significant increases in the therapeutic window
for improving radiotherapy outcomes. However, the mechanisms for this effect are currently unknown. Project 4
will build on the exciting preliminary data that carbogen (95% O2; 5% CO2) breathing significantly diminished the
protection of normal brain tissue while enhancing the responses of tumors. This result as well as theoretical
considerations of the differential redox reactions of O2 in cancer versus normal tissues provides the impetus to
study the reactions of O2 as drivers of the differential responses of normal and cancer tissue to FLASH-RT.
These considerations have led to the central hypothesis in Project 4 that differential metabolism of organic
hydroperoxides (ROOH) in cancer versus normal tissues following FLASH-RT, caused by differences in
labile Fe pools and lipid peroxidation chain reactions, mediates the differential responses of tumor vs.
normal tissues to FLASH-RT. This hypothesis will be pursed in the following Aims:
Specific Aim 1: Determine how varying the O2 tension that animals breathe alters the structural integrity of the
vasculature, mature neuronal morphology, activation of inflammatory responses, and neurocognitive effects of
FLASH-RT versus conventional dose rate exposure.
Specific Aim 2: Determine if changes in O2 in tumor versus normal tissues following FLASH-RT using Oxylite
measurements correlate with measurements of ROOH and downstream products of lipid peroxidation in animal
tissues exposed to FLASH-RT at doses where normal tissue sparing is observed.
Specific Aim 3: Determine the causal involvement of organic hydroperoxides and redox active metal ions in the
differential sensitivity of tumor versus normal tissues using pharmacological and genetic approaches to
manipulate glutathione peroxidases (GPx) 1 and 4 as well as metal chelators that inhibit Fe redox cycling.
Scientific Impact: The successful completion of this project will clearly define biochemical mechanisms
involving organic hydroperoxide metabolism and redox active iron metabolism underlying the selective sparing
of normal tissues from FLASH-RT in mouse models of brain cancer therapy as well as providing a new paradigm
for using FLASH-RT to exploit fundamental differences in cancer vs. normal cell metabolism for increasing
treatment efficacy while protecting normal tissues.
Integration into the P01: Project 4 will interact with all projects in the P01 by providing genetically manipulated
brain cancer cells that conditionally overexpress GPx 1 and 4 as well as ferritin and validated biomarkers of
oxidative stress for testing mechanisms of oxidative metabolism in models of FLASH-RT.
项目概要/摘要-项目4:闪光效应的机理基础:O2的作用
最近,在几种动物模型中获得的令人兴奋和意想不到的新数据有力地支持了超
高剂量率照射称为FLASH放射治疗(FLASH-RT),可导致正常
组织,同时保留肿瘤反应,有效地导致治疗窗口的显著增加
用于改善放射治疗效果。然而,这种效应的机制目前尚不清楚。项目4
将建立在令人兴奋的初步数据上,即碳氧(95%O2; 5%CO2)呼吸显著减少了
保护正常脑组织,同时增强肿瘤的反应。这一结果以及理论
考虑到癌症与正常组织中O2的不同氧化还原反应,
研究O2作为正常和癌组织对FLASH-RT的不同反应的驱动因素的反应。
这些考虑导致了项目4的中心假设,即有机物的差异代谢
在FLASH-RT后,癌症与正常组织中的氢过氧化物(ROOH),
不稳定的铁池和脂质过氧化链反应,介导肿瘤与
正常组织进行FLASH-RT。这一假设将在以下目标中得到证实:
具体目标1:确定动物呼吸的O2张力的变化如何改变动物呼吸器官的结构完整性。
血管,成熟神经元形态,炎症反应的激活,以及
FLASH-RT与常规剂量率暴露。
具体目标2:确定使用Oxylite进行FLASH-RT后肿瘤与正常组织中的O2变化
测量与ROOH和动物脂质过氧化下游产物的测量相关
在观察到正常组织保留的剂量下暴露于FLASH-RT的组织。
具体目标3:确定有机氢过氧化物和氧化还原活性金属离子在
使用药理学和遗传学方法,
操纵谷胱甘肽过氧化物酶(GPx)1和4以及抑制Fe氧化还原循环的金属螯合剂。
科学影响:该项目的成功完成将明确定义生物化学机制
包括有机氢过氧化物代谢和氧化还原活性铁代谢的选择性保留
在脑癌治疗的小鼠模型中,
使用FLASH-RT利用癌症与正常细胞代谢的根本差异,
治疗效果,同时保护正常组织。
整合到P01中:项目4将通过提供基因操纵的基因,与P01中的所有项目相互作用。
条件性过表达GPx 1和GPx 4以及铁蛋白的脑癌细胞,以及
氧化应激用于在FLASH-RT模型中测试氧化代谢机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Limoli其他文献
Charles Limoli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Limoli', 18)}}的其他基金
Improving pediatric brain tumor treatments using FLASH radiotherapy
使用 FLASH 放射治疗改善小儿脑肿瘤治疗
- 批准号:
10408856 - 财政年份:2021
- 资助金额:
$ 40.44万 - 项目类别:
Improving pediatric brain tumor treatments using FLASH radiotherapy
使用 FLASH 放射治疗改善小儿脑肿瘤治疗
- 批准号:
10653165 - 财政年份:2021
- 资助金额:
$ 40.44万 - 项目类别:
Improving pediatric brain tumor treatments using FLASH radiotherapy
使用 FLASH 放射治疗改善小儿脑肿瘤治疗
- 批准号:
10269365 - 财政年份:2021
- 资助金额:
$ 40.44万 - 项目类别:
Project 1: Optimizing Treatment of GBM by FLASH
项目1:GBM FLASH优化治疗
- 批准号:
10652597 - 财政年份:2020
- 资助金额:
$ 40.44万 - 项目类别:
Increasing the therapeutic index of brain tumor treatment through innovative FLASH radiotherapy
通过创新FLASH放射治疗提高脑肿瘤治疗的治疗指数
- 批准号:
10415033 - 财政年份:2020
- 资助金额:
$ 40.44万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 40.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




