Hypoglossal neuropathy in the pathogenesis of radiation associated dysphagia (hRAD)

放射相关吞咽困难 (hRAD) 发病机制中的舌下神经病变

基本信息

项目摘要

ABSTRACT/SUMMARY Radiation-associated dysphagia (RAD) is a leading driver of QOL and a potentially life-threatening survivorship issue, afflicting more than half of patients treated with curative radiotherapy (RT) for oropharyngeal cancers (OPC). Aspirators are almost 5-times more likely to develop pneumonia than non-aspirators, and pneumonia confers a 42% increased risk of mortality among cancer survivors. Radiation fibrosis has long been considered the primary driver of RAD, but the investigators’ preliminary work points to late cranial neuropathy as a major contributor to truly severe forms of delayed or late-RAD. Cranial neuropathy (denervation) is clinically detected a median of 5 to 8 years after RT after a “quiet period” of functional recovery. There is currently no early indicator for this injury. Delayed identification means that muscle atrophy and profound functional injury is typically present at the time of diagnosis, limiting therapeutic potential. The long-term goal of this work is to reduce dysphagia burden through mechanistically and technically nimble surveillance algorithms as a major step toward personalized management. Our central hypothesis is that subclinical hypoglossal neuropathy is prevalent and associates with severity of RAD early in HNC survivorship and novel non-invasive lingual high density surface electromyography (HDSEMG) is feasible for quantitative functional surveillance. The objective of the proposed study is to analyze gold-standard needle EMG and experimental HDSEMG of the tongue as an optional procedure in an existing large-scale OPC cohort and two clinical trial datasets that capture robust longitudinal swallowing outcomes data to: 1) estimate prevalence of hypoglossal neuropathy along continuum of survivorship (diagnosis, early, and late) after oropharyngeal radiation (Aim 1); 2) correlate EMG-detected hypoglossal neuropathy and swallowing function over time before and after oropharyngeal radiation (Aim 2); and 3) examine feasibility of HDSEMG as a rapid, non-invasive quantitative screening method for hypoglossal neuropathy (Aim 3). Building upon the highly curated functional data from the MD Anderson OPC Patient-Reported Outcomes/Function (PROF) Core and investigators’ track record of non-invasive signal measurement in the tongue, we are uniquely positioned to accomplish these complementary aims. This high risk/high reward work could lead to practice- change. We expect the outcomes to provide proof of concept that subclinical hypoglossal neuropathy is a mechanism underlying RAD that can be measured with a novel, non-invasive device. Thus, providing data to support a novel and measurable target (subclinical hypoglossal neuropathy) underlying a hugely impactful and potentially deadly common toxicity –RAD– in a fast growing, young OPC survivor population.
摘要/总结 放射相关性吞咽困难(RAD)是QOL的主要驱动因素,可能危及生命 这个问题困扰着一半以上接受过放射治疗的口咽癌患者 (OPC)。吸入者患肺炎的可能性几乎是非吸入者的5倍, 使癌症幸存者的死亡风险增加42%。放射性纤维化一直被认为是 RAD的主要驱动因素,但研究人员的初步工作指出,晚期颅神经病变是一个主要的 导致真正严重的延迟或迟发性RAD。临床检测到颅神经病变(去神经支配) 经过功能恢复的“平静期”后,RT后的平均时间为5至8年。目前还没有任何早期指标 对于这种伤害。延迟识别意味着肌肉萎缩和严重的功能损伤是典型的存在 在诊断时,限制了治疗潜力。这项工作的长期目标是减少吞咽困难 通过机械和技术上灵活的监控算法, 个性化管理我们的中心假设是,亚临床舌下神经病变是普遍的, 与HNC早期RAD的严重程度和新的非侵入性舌高密度表面相关 肌电图(HDSEMG)是可行的定量功能监测。建议的目标 本研究将金标针肌电图和实验性舌高分辨表面肌电作为一种可选择的程序进行分析 在现有的大规模OPC队列和两个临床试验数据集中, 结果数据:1)估计舌下神经病变沿着生存连续体的患病率(诊断, 早期和晚期)口咽放射后(目的1); 2)相关肌电图检测舌下神经病变, 在口咽放射之前和之后随时间推移的吞咽功能(目标2);以及3)检查 HDSEMG作为舌下神经病变的快速、非侵入性定量筛查方法(目的3)。建筑 根据MD安德森OPC患者报告结局/功能的高度策划的功能数据 (PROF)核心和研究人员的跟踪记录的非侵入性信号测量的舌头,我们是独一无二的 以实现这些互补的目标。这种高风险/高回报的工作可能会导致实践- 变化我们希望这些结果能为亚临床舌下神经病变是一种 RAD的潜在机制,可以用一种新的,非侵入性的设备来测量。因此,将数据提供给 支持一个新的和可测量的目标(亚临床舌下神经病变), 潜在致命的常见毒性-RAD-在一个快速增长,年轻的OPC幸存者群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Arnold Hutcheson其他文献

Katherine Arnold Hutcheson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katherine Arnold Hutcheson', 18)}}的其他基金

Dissemination and implementation of DIGEST™ as an evidence-based measurement tool for dysphagia in cancer
传播和实施 DIGEST™ 作为癌症吞咽困难的循证测量工具
  • 批准号:
    10584824
  • 财政年份:
    2023
  • 资助金额:
    $ 19.04万
  • 项目类别:
Lingual Strength & Dysphagia after Oropharynx Cancer: Proton vs. Photon Radiation
语言力量
  • 批准号:
    9103047
  • 财政年份:
    2015
  • 资助金额:
    $ 19.04万
  • 项目类别:
Lingual Strength & Dysphagia after Oropharynx Cancer: Proton vs. Photon Radiation
语言力量
  • 批准号:
    8959426
  • 财政年份:
    2015
  • 资助金额:
    $ 19.04万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.04万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了