Mechanisms of persistent neural activity

持续神经活动的机制

基本信息

  • 批准号:
    10652453
  • 负责人:
  • 金额:
    $ 52.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Although many well-studied aspects of neural function involve activity driven by sensory inputs or occurring at the time of motor actions, the brain often links such fleeting sensory and motor signals with persistent activity. Somehow, neural circuits and individual neurons are capable of maintaining activity without additional input. This is a fundamental aspect of neural function and a critical building block of cognition. The mechanisms underlying persistent neural activity have long been considered in both experiment and theory, but there is little definitive mechanistic understanding of the circuit and cellular contributions to persistent activity. Indeed, theories of persistent activity are far more biologically nuanced than current empirical knowledge— especially in the nonhuman primate, from which our understanding should have greatest clinical relevance given the number of disorders that involve persistent activity. Here, we propose work that leverages advanced techniques for multiple scales (and specificities) of neural recordings with corresponding analyses of large- scale datasets to test detailed theories of how the brain generates and maintains persistent activity. Specific Aim 1. Establish the marmoset as a powerful complementary model system for dissecting persistent activity mechanisms in primate brains. We will demonstrate the viability of studying memory-guided saccades and persistent activity in the marmoset, using successful training approaches, electrophysiology, and calcium imaging to elicit the key behavior and to characterize the important brain areas in this exciting primate model system. Specific Aim 2. Characterize the large-scale circuitry underlying oculomotor persistent activity. Using large scale recordings of extracellular activity across multiple brain regions collecting during performance of a memory-guided saccade task, we will acquire a dataset of unprecedented scale to assess the large-scale circuitry underlying persistent activity. We will adapt, develop, and deploy advanced statistical models to capture the functional interactions between neurons and brain areas. Specific Aim 3. Test and refine theories of persistent activity with novel measurements at fine spatial and genetic resolution. We will perform both 2-photon imaging and high density electrophysiological measures of neural activity. The imaging will allow us to test the local circuit components of the theory, as well as to assess cell-type-specific contributions to persistent activity. High density electrophysiology will reveal the local circuit architecture and signal flow that are not accessible with coarser techniques. Integrated within our analysis framework, the resultant model of persistent activity will be supported and refined by multiple scales and forms of empirical evidence, all collected in the primate brain.
项目总结/摘要 尽管神经功能的许多方面得到了充分的研究,涉及由感觉输入驱动的活动或发生在 在运动动作发生时,大脑经常将这种短暂的感觉和运动信号与持续的活动联系起来。 不知何故,神经回路和单个神经元能够在没有额外输入的情况下保持活动。 这是神经功能的一个基本方面,也是认知的一个重要组成部分。的机制 长期以来,在实验和理论中一直考虑潜在的持续神经活动,但很少有 对电路和细胞对持续活动的贡献的明确的机械理解。的确, 持续活动的理论比目前的经验知识更具有生物学上的细微差别--特别是 在非人类灵长类动物中,我们的理解应该具有最大的临床相关性, 一些涉及持续活动的疾病。在这里,我们建议利用先进的 神经记录的多尺度(和特异性)技术,以及相应的大尺度神经记录分析。 大规模数据集来测试大脑如何产生和维持持续活动的详细理论。 具体目标1.建立绒猴作为解剖学的有力补充模型系统 灵长类大脑中的持续活动机制。 我们将证明研究记忆引导的扫视和绒猴持续活动的可行性, 使用成功的训练方法、电生理学和钙成像来引出关键行为, 描述了这个令人兴奋的灵长类动物模型系统中重要的大脑区域。 具体目标2.描述眼神经持续活动背后的大规模电路。 使用跨多个大脑区域的细胞外活动的大规模记录, 记忆引导的扫视任务的性能,我们将获得前所未有的规模的数据集来评估 持续活动背后的大规模电路。我们将调整、开发和部署先进的统计 模型来捕捉神经元和大脑区域之间的功能相互作用。 具体目标3.用精细空间的新测量来测试和完善持续活动的理论 和基因分辨率。 我们将进行双光子成像和神经活动的高密度电生理测量。的 成像将使我们能够测试理论的局部电路组件,以及评估细胞类型特异性。 对持续活动的贡献。高密度电生理学将揭示局部电路结构, 这些信号流不能用较粗糙技术来访问。结合我们的分析框架, 持续活动的最终模型将得到多种尺度和形式的经验模型的支持和完善 证据都收集在灵长类动物的大脑里

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander C Huk其他文献

Alexander C Huk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander C Huk', 18)}}的其他基金

Mechanisms of persistent neural activity
持续神经活动的机制
  • 批准号:
    10467871
  • 财政年份:
    2022
  • 资助金额:
    $ 52.95万
  • 项目类别:
CRCNS Detailed multi-neuron coding of decisions in parietal cortex
CRCNS 顶叶皮层决策的详细多神经元编码
  • 批准号:
    8841830
  • 财政年份:
    2012
  • 资助金额:
    $ 52.95万
  • 项目类别:
CRCNS Detailed multi-neuron coding of decisions in parietal cortex
CRCNS 顶叶皮层决策的详细多神经元编码
  • 批准号:
    8443949
  • 财政年份:
    2012
  • 资助金额:
    $ 52.95万
  • 项目类别:
CRCNS Detailed multi-neuron coding of decisions in parietal cortex
CRCNS 顶叶皮层决策的详细多神经元编码
  • 批准号:
    8530291
  • 财政年份:
    2012
  • 资助金额:
    $ 52.95万
  • 项目类别:
CRCNS Detailed multi-neuron coding of decisions in parietal cortex
CRCNS 顶叶皮层决策的详细多神经元编码
  • 批准号:
    8660348
  • 财政年份:
    2012
  • 资助金额:
    $ 52.95万
  • 项目类别:
Neural time-integration underlying higher cognitive function
高级认知功能背后的神经时间整合
  • 批准号:
    7850126
  • 财政年份:
    2009
  • 资助金额:
    $ 52.95万
  • 项目类别:
Neural time-integration underlying higher cognitive function
高级认知功能背后的神经时间整合
  • 批准号:
    8760050
  • 财政年份:
    2008
  • 资助金额:
    $ 52.95万
  • 项目类别:
Neural time-integration underlying higher cognitive function
高级认知功能背后的神经时间整合
  • 批准号:
    7466490
  • 财政年份:
    2008
  • 资助金额:
    $ 52.95万
  • 项目类别:
Neural time-integration underlying higher cognitive function
高级认知功能背后的神经时间整合
  • 批准号:
    7589647
  • 财政年份:
    2008
  • 资助金额:
    $ 52.95万
  • 项目类别:
Neural time-integration underlying higher cognitive function
高级认知功能背后的神经时间整合
  • 批准号:
    8066597
  • 财政年份:
    2008
  • 资助金额:
    $ 52.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了