Preventing antimicrobial resistance and infections in hospitalized neonates in low resource settings
预防资源匮乏地区住院新生儿的抗菌药物耐药性和感染
基本信息
- 批准号:10652977
- 负责人:
- 金额:$ 17.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-13 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdmission activityAlgorithmsAntibiotic ResistanceAntibioticsAntimicrobial ResistanceAssessment toolBacterial InfectionsBiometryBirthBloodCarbapenemsCaringCephalosporinsCharacteristicsClinicalClinical InvestigatorCohort StudiesColistinCommunicable DiseasesCommunitiesDataData AnalysesDecision MakingDecision TreesDevelopmentDevicesDisease OutbreaksEngineeringEnrollmentEpidemiologic MethodsEpidemiologyFutureGenerationsGoalsGram-Negative BacteriaHandHealth care facilityHealthcareHospitalizationHumanHygieneImmune systemIncidenceIndiaInfectionInfection ControlInfection preventionIntensive CareInterventionInvestigationKlebsiella pneumoniaeLength of StayLifeMeasuresMechanical ventilationMentorsMentorshipMethodologyMethodsModelingMorbidity - disease rateNeonatalNeonatal Intensive Care UnitsNeonatal MortalityNewborn InfantNosocomial InfectionsOrganismPathway interactionsPatientsPneumoniaPositioning AttributePrevalencePrincipal InvestigatorProceduresProspective cohortProspective, cohort studyRecommendationRectumResearchResearch PersonnelResistanceResistance to infectionResource-limited settingRisk FactorsRisk ReductionSepsisSiteSurveysTestingTimeTrainingUniversitiesWorkantibiotic resistant infectionsbacterial resistancebiobankcarbapenem resistancecareerclassification treesclinical investigationcohortcritically ill newbornhealth care modelhealthcare-associated infectionshigh riskhospital careimprovedimproved outcomeinfection risklow and middle-income countriesmachine learning modelmodifiable riskmortalityneonatal careneonatal deathneonatal healthneonatal infectionneonatal sepsisneonatenovelpathogenpatient oriented researchpatient safetypredictive modelingprematurepreventprospectiverectalregression treesskill acquisitionskillstertiary caretooltreatment strategy
项目摘要
Project Summary/Abstract
Annually, 2.5 million babies die within the first four weeks of life, nearly a quarter due to infectious causes.
Newborns admitted to the Neonatal Intensive Care Unit (NICU) are especially vulnerable, due to such factors as
prematurity, an immature immune system, and need for life-sustaining invasive procedures and devices. In low
and middle income countries (LMIC), an increasing number of NICUs care for premature and critically ill
newborns. Healthcare-associated bloodstream infections (HA-BSI) in LMIC are more common due to inadequate
infection prevention and control (IPC) and more difficult to treat due to high rates of antimicrobial resistance
(AMR). Previous research in this setting focuses primarily on outbreak investigations and does not adequately
describe risk factors for HA-BSI. Healthcare facilities lack effective tools to assess maternal and neonatal IPC
and create improvement strategies. Preliminary data from the applicant's ongoing prospective cohort study that
has enrolled over 6600 neonates in three NICUs in Pune, India, reinforces the high incidence of HA-BSI in this
setting with a rate of 7.6 per 1000 patient-days, as well as high rates of AMR. Among Klebsiella pneumoniae
isolates, the most common BSI pathogen, 96% are resistant to third-generation cephalosporins and 38% to
carbapenems. Among neonates with BSI, mortality is 22%. Within the framework of this study, the following are
proposed: (1) To identify modifiable risk factors for HA-BSI in the NICU; (2) To develop a model for predicting
infection with carbapenem-resistant organisms (CRO); and (3) To develop and pilot a novel tool to assess IPC
practices in the NICU and Labor & Delivery. Identifying risk factors for HA-BSI in the NICU will promote
development of targeted IPC strategies. Creation of a prediction model using a decision tree algorithm will help
identify babies at highest risk of CRO infections. Such a model can support NICU clinicians in selecting the right
antibiotics when infection is suspected, reducing time to appropriate therapy and decreasing unnecessary use
of last resort antibiotics such as colistin. Development of an IPC assessment tool that incorporates human factors
engineering (HFE) principles will enable healthcare facilities to optimize IPC and reduce risk of hospital-acquired
infections and associated mortality. This mentored research will train the applicant in advanced epidemiologic
methods and application of IPC in LMIC. The applicant is a neonatologist at Johns Hopkins University committed
to patient-oriented research in resource-limited settings. Her long-term goals are to become a leader in neonatal
IPC in low resource settings and devise interventions to reduce global burden of HA-BSI and associated
mortality. This K23 will facilitate skill development in longitudinal data analysis, prediction models, survey
development, HFE, and qualitative data analysis. Training will include formal coursework, supervised data
analysis, and mentorship by a team with expertise in infectious diseases, IPC, biostatistics, epidemiology, patient
safety, and HFE. Collectively, the activities of this K23 will provide a pathway to an independent career as a
clinical investigator with expertise in healthcare epidemiology and IPC in low resource settings.
项目总结/摘要
每年有250万婴儿在出生后的前四周内死亡,其中近四分之一是由于感染原因。
新生儿重症监护室(NICU)的新生儿尤其脆弱,原因包括:
早产、不成熟的免疫系统以及对维持生命的侵入性程序和设备的需求。在低
在中等收入国家(LMIC),越来越多的新生儿重症监护病房照顾早产儿和危重病患者,
新生儿LMIC中的医疗保健相关性血流感染(HA-BSI)更常见,原因是
感染预防和控制(IPC),由于抗生素耐药率高而更难治疗
(AMR)。以前在这方面的研究主要集中在暴发调查,
描述HA-BSI的风险因素。医疗机构缺乏评估孕产妇和新生儿IPC的有效工具
并制定改进策略。申请人正在进行的前瞻性队列研究的初步数据,
在印度浦那的三个NICU中招募了超过6600名新生儿,加强了HA-BSI的高发病率,
发生率为7.6/1000患者-天,以及AMR发生率较高。在肺炎克雷伯菌中
分离株是最常见的BSI病原体,96%对第三代头孢菌素耐药,38%对
碳青霉烯类。新生儿BSI的死亡率为22%。在这项研究的框架内,
建议:(1)确定NICU中HA-BSI的可改变的危险因素;(2)开发预测HA-BSI的模型。
碳青霉烯类耐药微生物(CRO)感染;(3)开发和试验一种新的工具来评估IPC
在新生儿重症监护室和分娩室的实践。在NICU中识别HA-BSI的风险因素将促进
制定有针对性的IPC战略。使用决策树算法创建预测模型将有助于
确定婴儿感染CRO的风险最高。这样的模型可以支持NICU临床医生选择正确的
怀疑感染时使用抗生素,减少适当治疗的时间,减少不必要的使用
最后的抗生素,如粘菌素。开发一个包含人为因素的IPC评估工具
HFE原则将使医疗机构能够优化IPC并降低医院获得性
感染和相关死亡率。这项指导研究将培训申请人在先进的流行病学
方法及IPC在LMIC中的应用。申请人是约翰霍普金斯大学的生物学家,
在资源有限的环境中进行以病人为导向的研究。她的长期目标是成为新生儿
IPC在低资源环境中,并制定干预措施,以减少HA-BSI和相关疾病的全球负担
mortality.该K23将促进纵向数据分析,预测模型,调查
发展,HFE和定性数据分析。培训将包括正式的课程,监督数据
分析,并由一个在传染病,IPC,生物统计学,流行病学,患者
安全性和HFE。总的来说,这个K23的活动将提供一个独立的职业生涯作为一个
在低资源环境中具有医疗保健流行病学和IPC专业知识的临床研究者。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Infection Prevention in the Neonatal Intensive Care Unit.
- DOI:10.1016/j.clp.2021.03.011
- 发表时间:2021-06
- 期刊:
- 影响因子:2.1
- 作者:Johnson J;Akinboyo IC;Schaffzin JK
- 通讯作者:Schaffzin JK
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Johnson其他文献
Julia Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Johnson', 18)}}的其他基金
Preventing antimicrobial resistance and infections in hospitalized neonates in low resource settings
预防资源匮乏地区住院新生儿的抗菌药物耐药性和感染
- 批准号:
10215584 - 财政年份:2020
- 资助金额:
$ 17.17万 - 项目类别:
Preventing antimicrobial resistance and infections in hospitalized neonates in low resource settings
预防资源匮乏地区住院新生儿的抗菌药物耐药性和感染
- 批准号:
10438625 - 财政年份:2020
- 资助金额:
$ 17.17万 - 项目类别: