Illuminating apical extracellular matrix structure and biogenesis
阐明顶端细胞外基质结构和生物发生
基本信息
- 批准号:10654029
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimalsApicalArchitectureAreaBiogenesisBioinformaticsBiologyC. elegans genomeCRISPR/Cas technologyCaenorhabditis elegansCellsCommunitiesComplexCoupledDataDegenerative polyarthritisDevelopmentDiseaseDissectionElectron MicroscopyEnvironmentEpitheliumExtracellular MatrixExtracellular Matrix ProteinsFibrosisFunctional disorderGenesGoalsHuman DevelopmentImageIndividualInvestigationKnock-inKnowledgeLabyrinthLibrariesLifeLightingLocationMalignant NeoplasmsMethodsMicroscopyModificationMolecularMolecular GeneticsNanostructuresNematodaPathologyPatternPhenotypePlayProtein FamilyProteinsProteomicsProtocols documentationReagentResearchResolutionResourcesRoleStandardizationStructureSurfaceSystemTechnologyTestingValidationWorkdesignextracellularflexibilityfluorophoregene functiongenetic resourcegenome editinghuman diseaseimprovedin vivomechanotransductionnanoscalenovelsubmicronsuperresolution imagingsuperresolution microscopythree dimensional structuretranscriptomics
项目摘要
Apical extracellular matrices (aECMs) are associated with all epithelia and are essential for animal life.
They form an outer protective layer against biotic and abiotic (physical damage) challenges from the
environment. Human diseases associated with aECM dysfunction manifest a range of pathologies
including, but not limited to, fibrosis, osteoarthritis, and cancer. aECMs also play important structural roles
and are critical in mechanotransduction, such as in the vertebrate inner ear. However, in general we lack
an understanding of the 3D organization of aECM at a molecular level, including its dynamics in
development and disease states. The premise for this work is to create a systematic set of fluorescently
tagged endogenous apical extracellular matrix (aECM) components, and further, through characterization
using super-resolution microscopy, to reveal how these molecules are organized into nanoscale patterns in
vivo. aECMs are associated with all epithelia and are essential for animal life. A hallmark of aECMs is their
ability to form complex 3D structures patterned at the sub-micron scale. Such nanoscale architectures have
been described by electron microscopy in a variety of systems but have for the most part lacked molecular
correlates. Despite their recognized importance, the composition and biogenesis of aECMs remain poorly
understood, partly because many aspects of aECM biology can only be fully studied in vivo. Moreover, a
critical knowledge gap in aECM biology is how secreted molecules assemble in the extracellular
environment to form and maintain complex 3D structures with nanoscale patterning. Basic features of the
spatial and temporal localization of aECM components remain poorly understood because of these
challenges. The increasing tractability of gene editing technology has enabled tagging of endogenous
proteins (knockins); coupled with advanced imaging, knockin tagged proteins allow rigorous analysis of
aECM nanoscale structure and biogenesis. We will exploit these technical advances to develop a
standardized set of strains expressing fluorescently tagged aECM proteins in C. elegans, the ‘aECM
toolkit’. These reagents will not only reveal novel aspects of aECM biology but will also establish principles
for tagging and live imaging of the aECM in other systems. Our toolkit will open up the field of nanoscale
aECM patterning to molecular genetic dissection, as well as leading to enhanced understanding of aECM in
disease. We will generate a set of 100 knockin strains using CRISPR/Cas9 genome editing and make our
toolkit and protocols widely available, generating a critical resource for the community. We will determine
localization, biogenesis, and nanoscale architecture of aECM components. We will use live imaging to
determine how aECM components are secreted and assemble into complex 3D structures during
development. Our aECM toolkit will illuminate aECM assembly and dynamics and will fill critical knowledge
gaps in aECM structure and dynamics in development and diseases.
顶端细胞外基质(aECMs)与所有上皮细胞相关,并且是动物生命所必需的。
它们形成了一个外部保护层,可以抵御来自生物和非生物(物理损害)的挑战。
环境与aECM功能障碍相关的人类疾病表现出一系列病理学
包括但不限于纤维化、骨关节炎和癌症。aECM也发挥重要的结构作用
并且在机械传导中,例如在脊椎动物内耳中是关键的。但总的来说,我们缺乏
在分子水平上理解aECM的3D组织,包括其在
发展和疾病状态。这项工作的前提是建立一套系统的荧光
标记的内源性顶端细胞外基质(aECM)组分,并进一步通过表征
使用超分辨率显微镜,揭示这些分子是如何组织成纳米级图案的,
vivo. aECM与所有上皮细胞相关,并且是动物生命所必需的。aECM的一个特点是它们
形成亚微米级复杂3D结构图案的能力。这种纳米级架构具有
已经在各种系统中通过电子显微镜进行了描述,但大多数情况下缺乏分子
相互关联尽管它们的重要性得到了公认,但aECM的组成和生物起源仍然很差
这是因为aECM生物学的许多方面只能在体内进行充分研究。而且
aECM生物学中的关键知识缺口是分泌的分子如何在细胞外组装
环境来形成和维持具有纳米级图案化的复杂3D结构。基本特征的
aECM成分空间和时间定位仍然知之甚少,因为这些
挑战基因编辑技术日益增加的易处理性使得能够标记内源性基因。
蛋白质(knockins);加上先进的成像,敲入标记的蛋白质允许严格的分析
aECM纳米级结构和生物发生。我们将利用这些技术进步,
在C. elegans,aECM
工具箱这些试剂不仅将揭示aECM生物学的新方面,
用于在其他系统中对aECM进行标记和实时成像。我们的工具包将打开纳米尺度的领域
aECM模式化到分子遗传学解剖,以及导致对aECM的理解增强,
疾病我们将使用CRISPR/Cas9基因组编辑产生一组100个敲入菌株,并使我们的
广泛提供工具包和协议,为社区提供关键资源。我们将确定
aECM组分的定位、生物发生和纳米级结构。我们将使用实时成像,
确定aECM成分如何分泌并组装成复杂的3D结构,
发展我们的aECM工具包将阐明aECM组装和动力学,并将填补关键知识
aECM结构和发展与疾病动态的差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew D Chisholm其他文献
Andrew D Chisholm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew D Chisholm', 18)}}的其他基金
Illuminating apical extracellular matrix structure and biogenesis
阐明顶端细胞外基质结构和生物发生
- 批准号:
10508998 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 19.5万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 19.5万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Training Grant