CyberGut: towards personalized human-microbiome metabolic modeling for precision health and nutrition

Cyber​​Gut:针对精准健康和营养的个性化人类微生物代谢模型

基本信息

  • 批准号:
    10654052
  • 负责人:
  • 金额:
    $ 75.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY The gut microbiome aids in the digestion of complex polysaccharides, the absorption of vitamins, and the conversion of primary bile acids, drugs, and other bioactive compounds into metabolites that can be absorbed by the host. Thus, the metabolic activity of commensal microbes is closely intertwined with human physiology and the nutritional impact of our diet. However, there is limited understanding of how variation in the ecology of our intestinal flora modulates the biological impact of diet on human health and nutrition. Recent work has shown that differences in the composition of the gut microbiome can help explain person-to-person heterogeneity in glycemic responses, blood lipid profiles, and weight loss. In this proposal, we present an innovative platform for personalized metabolic modeling of the gut microbiome using metagenomic and dietary data as constraints. We propose the integration of tissue-resolved metabolic models of relevant host tissues, including a cell-type-specific metabolic reconstruction of the gut epithelium, into our existing microbial community model to improve estimates of metabolic fluxes between the gut microbiota, the diet, and the host. We will call this host-diet-microbiome metabolic model ‘CyberGut.’ Using existing multi-omic data from a cohort of >3,000 adults, we will constrain and validate CyberGut with paired measurements of diet, host blood metabolomes, and gut microbiomes. In addition, we will generate cross-sectional training and validation data consisting of paired blood and fecal metabolomes, fecal microbiomes, and detailed 3-day dietary recall data from a new cohort of 100 healthy participants. Using these data, we will refine and test two novel and independent diet-inference algorithms, which leverage stool metagenomes and stool untargeted metabolomes, respectively. Furthermore, using samples taken from a subset of this new cohort (N=40), we will perform ex vivo stool culturing experiments, designed to directly quantify metabolic fluxes and bacterial growth rates in vitro. These fluxomic data will be used to directly test in silico CyberGut flux predictions in response to a diverse panel of dietary and host metabolite interventions. In addition to contributing to the refinement and testing of our CyberGut model, the paired diet, microbiome, and metabolomic data, including replicate fluxomic assays, generated in this proposal will be an invaluable resource to the precision nutrition and human microbiome research community. In summary, we will build, refine, and test a novel platform for tracking dietary intake and predicting personalized nutritional responses to diet, which has the potential to fundamentally alter how we design and test dietary interventions.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Michael Gibbons其他文献

Sean Michael Gibbons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sean Michael Gibbons', 18)}}的其他基金

CyberGut: towards personalized human-microbiome metabolic modeling for precision health and nutrition
Cyber​​Gut:针对精准健康和营养的个性化人类微生物代谢模型
  • 批准号:
    10827347
  • 财政年份:
    2023
  • 资助金额:
    $ 75.88万
  • 项目类别:
CyberGut: towards personalized human-microbiome metabolic modeling for precision health and nutrition
Cyber​​Gut:针对精准健康和营养的个性化人类微生物代谢模型
  • 批准号:
    10502912
  • 财政年份:
    2022
  • 资助金额:
    $ 75.88万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 75.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了