An antioxidant enzyme to suppress hyperinflammation induced by SARS-CoV-2
一种抑制 SARS-CoV-2 引起的过度炎症的抗氧化酶
基本信息
- 批准号:10665424
- 负责人:
- 金额:$ 38.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-19 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAgeAirAlveolar CellAntibodiesAntibody TherapyBiodistributionBiomedical EngineeringBlood - brain barrier anatomyBlood CirculationBrainCOVID-19COVID-19 pandemicCOVID-19 pathogenesisCOVID-19 patientCOVID-19 therapeuticsCOVID-19 treatmentCell membraneCessation of lifeChemicalsChronic DiseaseCollaborationsCommunicable DiseasesDiabetes MellitusDiffuseDiseaseDisease OutbreaksDrug KineticsEffectivenessEnzyme StabilityEnzymesEpithelial CellsErythrocytesFoundationsFutureGoalsGrowth FactorHalf-LifeHomeostasisHumanHydrogen PeroxideImmuneImmunosuppressionIn VitroInfectionInflammationInflammatoryInfluenzaInternationalIntravenous ImmunoglobulinsJanus kinaseLaboratoriesLeukocytesLiquid substanceLiverMacaca mulattaMolecularMolecular TargetMonoclonal AntibodiesMorbid ObesityMusNatural ImmunityNatureNeoplasm MetastasisNeuraxisOrganOxidative StressOxygenPatientsPeptide HydrolasesPersonsPlasmaPneumoniaProductionProteinsProtocols documentationPublic HealthPublishingPulmonologyReactive Oxygen SpeciesRepressionResearchResearch PersonnelRespiratory DiseaseRespiratory Tract InfectionsRespiratory syncytial virusRisk FactorsRoleSARS-CoV-2 infectionSmokingSteroidsSystemTechnologyTestingTherapeuticTherapeutic AgentsTherapeutic Monoclonal AntibodiesTherapeutic UsesTimeTissuesToxic effectTreatment EfficacyViralVirus DiseasesVirus ReplicationWaterWorkalveolar epitheliumanakinraantioxidant enzymebasecareercatalasecatalystcell behaviorcytokineimmunogenicityimmunoregulationimprovedmortalitymouse modelmultidisciplinarynanocapsulenanoencapsulatedoxidative damagepandemic diseasepatient subsetspreventsevere COVID-19successtherapeutic enzymetherapeutic proteintherapeutically effectivetocilizumabtreatment strategyvirology
项目摘要
PROJECT SUMMARY
The COVID-19 pandemic has taken a significant toll on people worldwide, and current treatment is mainly
supportive. While the pathogenesis of COVID-19 remains elusive, accumulating evidence suggests that a
subgroup of patients with severe COVID-19 might have virally driven hyperinflammation and immune
dysregulation. We propose herein reactive oxygen species contribute to hyperinflammation and immune
dysregulation in severe COVID-19 patients, which can be treated by an antioxidant enzyme—catalase that
regulates cytokine production, protects against oxidative injury, and represses replication of SARS-CoV-2. This
therapeutic based on catalase, the most abundant antioxidant enzyme ubiquitously present in the liver,
erythrocytes and alveolar epithelial cells, is the most effective catalyst to breakdown hydrogen peroxide and
minimize the downstream reactive oxygen species. The potential of catalase as a therapeutic agent has been
explored for different diseases in vitro and in mouse models, including influenza-associated pneumonia,
respiratory infections caused by respiratory syncytial virus (RSV), and inflammatory disease associated with
oxidative stress. However, the efficacy of catalase has been hampered by its poor stability and short plasma
half-life. Particularly, in the context of COVID-19 patients, death of the alveolar cells and inflammation could
result in high local concentrations of proteases, further deteriorating the stability of catalase. We recently
published an effective delivery system of catalase using the nanocapsule technology. Catalase delivered by
nanocapsules assists to regulate production of cytokines and protect oxidative injury, as demonstrated in
human leukocytes and alveolar epithelial cells, and repress replication of SARS-CoV-2 in rhesus macaques,
without noticeable toxicity. In this proposal, we will further investigate the immunoregulatory effect of catalase
nanocapsules on hyperinflammation induced by SARS-CoV-2 ex vivo, further optimize their biodistribution,
pharmacokinetics, and delivery efficiency to SARS-CoV-2 infected organs, and test their therapeutic efficacy in
the SARS-CoV-2 infection mice developing respiratory disease resembling severe COVID-19. Success of this
project may provide an effective therapeutic solution for the pandemic, as well as treatment of
hyperinflammation induced by virus infection in general.
项目总结
新冠肺炎疫情已经给全球人民造成了重大损失,目前的治疗主要是
支持我。虽然新冠肺炎的发病机制仍不清楚,但越来越多的证据表明,
重症新冠肺炎患者亚群可能存在病毒驱动的炎症和免疫亢进
监管失调。我们认为,在这里,活性氧参与了过度炎症和免疫。
严重新冠肺炎患者的调节失调,可以通过一种抗氧化酶-过氧化氢酶来治疗
调节细胞因子的产生,防止氧化损伤,并抑制SARS-CoV-2的复制。这
基于过氧化氢酶的治疗作用,过氧化氢酶是肝脏中普遍存在的最丰富的抗氧化酶,
红细胞和肺泡上皮细胞,是分解过氧化氢和
最大限度地减少下游的活性氧。过氧化氢酶作为治疗剂的潜力已经被
在体外和小鼠模型中探索不同的疾病,包括流感相关性肺炎,
由呼吸道合胞病毒(RSV)引起的呼吸道感染,以及与
氧化应激。然而,过氧化氢酶的稳定性差,血浆时间短,其药效一直受到阻碍。
半衰期。尤其是在新冠肺炎患者中,肺泡细胞死亡和炎症可能
导致局部蛋白酶浓度较高,进一步恶化了过氧化氢酶的稳定性。我们最近
利用纳米胶囊技术发布了一种有效的过氧化氢酶给药系统。过氧化氢酶递送人
纳米胶囊有助于调节细胞因子的产生并保护氧化损伤,如
人白细胞和肺泡上皮细胞,并抑制SARS-CoV-2在猕猴体内的复制,
没有明显的毒性。在这项建议中,我们将进一步研究过氧化氢酶的免疫调节作用
纳米胶囊对SARS-CoV-2诱导的体外炎症反应的影响,进一步优化其生物分布,
SARS-CoV-2感染器官的药代动力学和给药效率,并测试其治疗效果
感染SARS-CoV-2的小鼠出现类似严重新冠肺炎的呼吸道疾病。这件事成功了
该项目可能为这一大流行提供有效的治疗解决方案,以及治疗
一般由病毒感染引起的高度炎症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Wen其他文献
Jing Wen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Wen', 18)}}的其他基金
Targeting delivery of mAbs to CNS metastases
将单克隆抗体靶向递送至中枢神经系统转移灶
- 批准号:
10034134 - 财政年份:2020
- 资助金额:
$ 38.03万 - 项目类别:
Targeting delivery of mAbs to CNS metastases
将单克隆抗体靶向递送至中枢神经系统转移灶
- 批准号:
10393044 - 财政年份:2020
- 资助金额:
$ 38.03万 - 项目类别:
Targeting delivery of mAbs to CNS metastases
将单克隆抗体靶向递送至中枢神经系统转移灶
- 批准号:
10227048 - 财政年份:2020
- 资助金额:
$ 38.03万 - 项目类别:
Targeting delivery of mAbs to CNS metastases
将单克隆抗体靶向递送至中枢神经系统转移灶
- 批准号:
10622457 - 财政年份:2020
- 资助金额:
$ 38.03万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Air Purification Systems at the Age of COVID-19
COVID-19 时代的先进空气净化系统
- 批准号:
RGPIN-2022-04710 - 财政年份:2022
- 资助金额:
$ 38.03万 - 项目类别:
Discovery Grants Program - Individual
Measurements of age of air by multi-clock tracers in stratosphere
平流层多时钟示踪剂测量空气年龄
- 批准号:
19K03963 - 财政年份:2019
- 资助金额:
$ 38.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Age-sex-ApoE allele interactions in neuronal and white matter vulnerability to air pollution
年龄-性别-ApoE等位基因相互作用影响神经元和白质对空气污染的脆弱性
- 批准号:
10456754 - 财政年份:2018
- 资助金额:
$ 38.03万 - 项目类别:
Air Pollution exposure risk to school-age children in high density urban environments: Exposure modelling in Hong Kong and the implications for a Canadian context
高密度城市环境中学龄儿童的空气污染暴露风险:香港的暴露模型及其对加拿大环境的影响
- 批准号:
529979-2018 - 财政年份:2018
- 资助金额:
$ 38.03万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Age-sex-ApoE allele interactions in neuronal and white matter vulnerability to air pollution
年龄-性别-ApoE等位基因相互作用影响神经元和白质对空气污染的脆弱性
- 批准号:
10216928 - 财政年份:2018
- 资助金额:
$ 38.03万 - 项目类别:
Risk changes by age on disasters, water resources, food resources, and air pollution caused by climate change and their adaptation measures
气候变化导致的灾害、水资源、粮食资源和空气污染的风险随年龄变化及其适应措施
- 批准号:
17KT0066 - 财政年份:2017
- 资助金额:
$ 38.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Temporal variation of the clock tracers in the tropical tropopause layer and its impact on the stratospheric age of air
热带对流层顶层时钟示踪剂的时间变化及其对平流层空气年龄的影响
- 批准号:
15K17760 - 财政年份:2015
- 资助金额:
$ 38.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Exposure to air pollution in utero and children's neurodevelopment at 3 years of age: the MIREC birth cohort
子宫内空气污染暴露与 3 岁时儿童神经发育:MIREC 出生队列
- 批准号:
318904 - 财政年份:2014
- 资助金额:
$ 38.03万 - 项目类别:
Fellowship Programs
Inflammation as a mediator of air-pollution induced chronic comorbidities in old age (COPD, Diabetes, Alzheimer's dementia)
炎症是空气污染诱发老年慢性合并症(慢性阻塞性肺病、糖尿病、阿尔茨海默氏痴呆)的介质
- 批准号:
189054245 - 财政年份:2011
- 资助金额:
$ 38.03万 - 项目类别:
Research Grants
Global observation of the stratospheric air age
平流层空气年龄的全球观测
- 批准号:
23340136 - 财政年份:2011
- 资助金额:
$ 38.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




