Implementing a coupled system of integrative ML modeling and data validation for elucidating microglial therapeutic targets in neurodegenerative disease

实施集成机器学习建模和数据验证的耦合系统,以阐明神经退行性疾病中的小胶质细胞治疗靶点

基本信息

  • 批准号:
    10699794
  • 负责人:
  • 金额:
    $ 145.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract: ALS and FTD are fatal neurodegenerative diseases that presently have no cure. To date, one focus area in ALS research has been developing model systems to characterize the condition, with over 20 different ALS mouse models, and more recently, numerous iPSC based models, each gradually contributing to our overall knowledge of the mechanisms behind neurodegeneration, and the contribution of the neuro-immune interface. Despite the multitude of disease models, there is no overarching, computational modeling framework for integrating disparate datasets, towards the goal of characterizing disease networks, and identifying therapeutic targets. Moreover, while standard ML models for target prediction have become ubiquitous in the biomedical sciences, they fail to learn causality, shedding little insight into underlying disease etiology and failing to make effective target predictions. Our proposal’s long-term goal is to create a flexible pipeline, applicable to ND diseases, to characterize the neuro-immune interface and its contribution to ND etiology, to enable therapeutic intervention by creating an integrated workflow to identify ND microglial disease networks in health, disease, and disease subsets. We will capitalize on existing experimental data as well as internal iPSC based in vitro models, paired with a causal ML model. Each component of this workflow can work independently, or can be linked to the other in a powerful ‘active learning’ framework, in which the ML model makes predictions, the co-culture system validates or disproves the prediction, and in each such round the in silico model is refined by integrating the new experimental data. Our causal machine learning model characterizes ND neuro-immune networks from analysis of combined molecular, clinical, and functional data in a multi-layered format with individual layers for ND disease state, data platform, and cell state analyzed simultaneously to bolster confidence for inferences shared among numerous layers and identify unique, and therapeutically relevant, network elements. We will focus initially on therapeutic interventions for ALS, followed by related ND diseases also characterized in the network model. The objectives of this proposal are: (1) to refine an in silico framework for data integration across NDs, microglial subsets, and heterogeneous datasets/data platforms enabling a robust model for therapeutic target prediction and (2) to validate predicted targets in our iPSC microglia and neuron co-culture system using in vitro perturbations (including antisense-oligonucleotides and small molecules) and high-content imaging analysis. The central hypothesis is that comprehensively integrating available data across public datasets and databases, ND diseases, model species, data platforms, and tissue types, with data from our co-culture screening platform, in a powerful mechanistic model, will enable elucidation of causal disease pathways, comparative analysis across conditions, and the identification of therapeutic targets. Ultimately, characterization of individuals can even enable personalized therapy approaches as well as identification of disease subtypes. 1
项目摘要/摘要:ALS和FTD是目前无法治愈的致死性神经退行性疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karen SACHS其他文献

Karen SACHS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315700
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
  • 批准号:
    2315747
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315699
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Standard Grant
CyberCorps Scholarship for Service: Defending Cyberspace through Active Learning
Cyber​​Corps 服务奖学金:通过主动学习捍卫网络空间
  • 批准号:
    2336586
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Continuing Grant
Project Visibility: Understanding the Experiences of Black Students in Active Learning Mathematics Courses in a Hispanic-Serving Institution Context
项目可见性:了解黑人学生在西班牙裔服务机构背景下主动学习数学课程的经历
  • 批准号:
    2337029
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315697
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315696
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Standard Grant
Conference: Active Learning Communities in Biochemistry
会议:生物化学主动学习社区
  • 批准号:
    2411535
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315698
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
  • 批准号:
    2315701
  • 财政年份:
    2024
  • 资助金额:
    $ 145.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了