Natural Plasma Nano-EVs for Drug Delivery
用于药物输送的天然血浆纳米电动汽车
基本信息
- 批准号:10698612
- 负责人:
- 金额:$ 27.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2025-03-14
- 项目状态:未结题
- 来源:
- 关键词:Antisense OligonucleotidesAutologousBindingBiodistributionBloodBlood Plasma VolumeBone MarrowBrainCell Culture TechniquesCell LineCellsCirculationClinicalCommunicationCustomDiameterDisease modelDoseDrug CarriersDrug Delivery SystemsDrug KineticsEngineeringHalf-LifeHumanImmunoassayIntravenousIon-Exchange Chromatography ProcedureLipidsLiposomesLiverMeasuresMembraneMethodsMolecular ProfilingMolecular Sieve ChromatographyOrganPenetrationPharmaceutical PreparationsPhasePlasmaPositron-Emission TomographyProceduresProductionPropertyProteinsRNARNA markerRadiolabeledReportingReproducibilityResearchSafetySmall Business Innovation Research GrantSpleenSurfaceTestingTherapeuticTissuesTropismcell immortalizationcell typedelivery vehicleexperienceextracellular vesiclesfluorescence imaginghuman stem cellsimmunogenicityimprovedin vivomultiple omicsnanonanoparticlenovelpharmacologicprotein biomarkersscale uptargeted delivery
项目摘要
ABSTRACT
Targeted delivery of efficacious drug levels with minimal off-target effects remains a major pharmacological
challenge as exemplified by the poor delivery of proteins, antisense oligonucleotides (ASO), and other
therapeutics to may organs. Drug delivery platforms that allow for controlled pharmacokinetic profile and cell
targeting, including nanoparticles, liposomes and cell-derived extracellular vesicles (EV), are thus aggressively
pursued by biopharma. However, several key gaps remain in engineering the appropriate size and surface
composition of drug carrier nanoparticles, which dictates their biodistribution. Despite their favorable
immunogenicity profile, EVs generated from human stem cells or immortalized cell lines invariably show
entrapment by reticuloendothelial (RES) cells in liver, spleen, and bone marrow following intravenous (IV)
dosing. In contrast, the persistently high plasma level of endogenous, organ derived EVs likely reflects reduced
clearance and longer circulation times, both properties important for allowing for efficient payload delivery to
multiple target tissues. Also, surface molecular signatures comprised of exposed proteins and lipids, which vary
across plasma EV subsets, are likely to dictate their tropism to specific organs or cells. This research will
capitalize on the naturally engineered properties of endogenous EVs to develop the first human plasma derived
drug delivery product.
We have developed a novel and sensitive multiplexed immunoassay, suitable for the use with unprocessed
plasma, to characterize plasma EV subsets based on specific profiles of surface-exposed proteins. This method
enabled us to discover of a novel endogenous subset of nano-EVs (nEV), whose small diameter (10-40 nm)
contrasts sharply with the 50-200 nm diameter reported for most EVs. The nEVs contain protein and RNA
markers of cells representing several organs as well as surface lipid and protein features to reduce RES clearance.
We hypothesize that this newly discovered EV subset is naturally adapted for long-range inter-
organ communications, and thus ideally suited for drug delivery.
This project will develop a robust and scalable method for isolation of large amounts of nEVs from commercially
acquired human plasma. We will also quantitatively characterize in vivo nEVs PK and biodistribution using in
vivo positron emission tomography (PET) and fluorescence imaging. The following specific aims will be pursued
in the current proposal: Aim 1: Nano-EV production: scale-up and characterization. Aim 2: Analysis of nEV
biodistribution and plasma half-life. By demonstrating that nEVs have improved biodistribution properties over
traditional EVs and that they can be easily isolated in large amounts from human plasma then phase 2 of our
SBIR will focus on optimizing drug loading and demonstrating efficacy in disease models.
抽象的
有针对性的有效药物水平具有最小的脱靶效应仍然是主要的药理
蛋白质递送不良,反义寡核苷酸(ASO)和其他
五月器官的治疗剂。允许受控药代动力学和细胞的药物输送平台
靶向,包括纳米颗粒,脂质体和细胞衍生的细胞外囊泡(EV),因此是积极的
由Biopharma追求。但是,工程中仍然存在一些关键差距
药物载体纳米颗粒的组成决定了它们的生物分布。尽管他们有利
免疫原性概况,由人类干细胞产生或永生的细胞系产生的EV总是显示出来的
静脉内(IV)后,肝脏,脾脏和骨髓中的网状内皮(RES)细胞捕获(RES)细胞(IV)
给药。相反,内源性器官衍生的EV的持续高血浆水平可能反映出降低
清除率和更长的流通时间,这两个属性对于允许有效的有效载荷交付至关重要
多个靶组织。同样,表面分子特征由暴露的蛋白质和脂质组成,它们不同
在整个等离子体EV子集中,可能会决定其对特定器官或细胞的端主。这项研究会
利用内源性电动汽车的自然设计特性,以开发出衍生的第一个人血浆
药物输送产品。
我们已经开发了一种新颖敏感的多重免疫测定法,适合于未经处理的
等离子体,以表面暴露蛋白的特定特征来表征等离子体EV子集。此方法
使我们能够发现纳米evs(NEV)的新型内源子集,该子集的直径很小(10-40 nm)
与大多数电动汽车报告的50-200 nm直径形成鲜明对比。 NEV包含蛋白质和RNA
代表几个器官以及表面脂质和蛋白质特征的细胞标记以减少清除率。
我们假设这个新发现的EV子集自然适用于远程间
器官通信,因此非常适合药物输送。
该项目将开发出一种可靠,可扩展的方法,用于从商业上隔离大量NEV
获得的人血浆。我们还将定量地表征体内nevs pk和使用生物分布
体内正电子发射断层扫描(PET)和荧光成像。将追求以下具体目标
在当前的建议中:目标1:纳米-EV产生:扩展和表征。目标2:NEV分析
生物分布和血浆半衰期。通过证明NEV已改善了生物分布的特性
传统的电动汽车,可以很容易地与人类等离子体大量隔离,然后是我们的第2阶段
SBIR将专注于在疾病模型中优化药物加载并证明功效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ajay Verma其他文献
Ajay Verma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
CT灌注扫描结合时间最大密度投影技术评估自体干细胞移植治疗难治性重度肢体缺血疗效的研究
- 批准号:81900426
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
碱性成纤维生长因子修饰脱细胞脊髓支架结合载NTP温敏凝胶构建仿生脊髓修复大鼠脊髓损伤的实验研究
- 批准号:81871766
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
以基因修饰的脂肪来源干细胞结合自体脂肪组织骨架治疗萎缩型骨不连疗效的研究
- 批准号:81501891
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
胰腺癌冷冻消融结合GM-CSF诱导自体原位肿瘤疫苗及有效肿瘤特异性抗原的筛选
- 批准号:81341068
- 批准年份:2013
- 资助金额:10.0 万元
- 项目类别:专项基金项目
还原型人发角蛋白(kerateine)-丝素蛋白复合材料结合自体供氧技术构建组织工程尿道的实验研究
- 批准号:81100488
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
How Does 3' UTR Secondary Structure Program mRNA Transport in Myelination?
3 UTR 二级结构如何控制髓鞘形成中的 mRNA 运输?
- 批准号:
10288149 - 财政年份:2021
- 资助金额:
$ 27.54万 - 项目类别:
Role of Hyperglycemia in Intracerebral Hemorrhage
高血糖在脑出血中的作用
- 批准号:
9060407 - 财政年份:2012
- 资助金额:
$ 27.54万 - 项目类别:
Role of Hyperglycemia in Intracerebral Hemorrhage
高血糖在脑出血中的作用
- 批准号:
8662820 - 财政年份:2012
- 资助金额:
$ 27.54万 - 项目类别:
Role of Hyperglycemia in Intracerebral Hemorrhage
高血糖在脑出血中的作用
- 批准号:
8373511 - 财政年份:2012
- 资助金额:
$ 27.54万 - 项目类别:
Role of Hyperglycemia in Intracerebral Hemorrhage
高血糖在脑出血中的作用
- 批准号:
8467771 - 财政年份:2012
- 资助金额:
$ 27.54万 - 项目类别: