AI-based AML risk stratification using next generation cytogenomics
使用下一代细胞基因组学进行基于人工智能的 AML 风险分层
基本信息
- 批准号:10699150
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcute Myelocytic LeukemiaArtificial IntelligenceArtificial Intelligence platformBiological AssayBiological MarkersBlindedCategoriesCell NucleusChromosome StructuresChromosome abnormalityChromosomesClinicalCollectionComplexComputer softwareCytogenetic AnalysisCytogeneticsDNADNA Sequence AlterationDataData AggregationData SetDecision MakingDevelopmentDiagnosticDiagnostic Reagent KitsDiseaseDisparateFoundationsFrequenciesGenetic EpistasisGenomeHematologyHi-CIndividualKaryotypeKaryotype determination procedureLengthLigationLinkMachine LearningMalignant NeoplasmsMethodsModelingMutationNeoplasmsOncologyOutcomePatient riskPatient-Focused OutcomesPatientsPatternPhenotypeRecurrenceResearchResolutionRiskSamplingSensitivity and SpecificitySeverity of illnessSystemTestingTrainingTranslatingUnbalanced TranslocationVariantWorkcloud basedfallsgenome-widehomologous recombinationimprovedinformation gatheringinsightleukemiamachine learning modelnext generationnext generation sequencingnovelpatient populationpatient stratificationphysical propertypredictive testprognosticprognostic valuerisk predictionrisk stratificationtooltumor
项目摘要
ABSTRACT
Chromosome aberrations are a hallmark of acute myeloid leukemia and offer mechanistic and
prognostic insights into disease. As such, a combination of cytogenetic assays are routinely applied as a part
of the AML diagnostic workflow. While offering invaluable information on disease severity, most chromosome
aberrations fall into the “cytogenetic abnormalities not classified” or “complex karyotype” categories. A range
of studies have shown that, while ambiguous, these variants have prognostic value, suggesting the existence
of cryptic variants of significance or complex epistases that drive the AML phenotype. However, there is
currently no system for translating genome-wide chromosomal aberration information into patient risk.
To improve the predictive potential of chromosome aberration profiles, we propose the development of
a risk-prediction metric that will add new prognostic value to AML studies. Specifically, we will produce a
method which will establish a patient risk metric that can help guide treatment decisions for patients
traditionally judged as of intermediate risk. This development will employ our scalable cytogenomic tools and
novel machine learning analytics to generate a large collection of cytogenomic datasets and analyze them to
identify patterns linked to AML phenotypes. Once completed, we will have a combined kit and software
solution that will not only improve upon existing cytogenetic applications in AML, but will offer new prognostic
insights beyond what is possible with current tools. This product will deliver high-resolution view of the
chromosome aberration landscape in AML and an offer a data-driven interpretation of how variants will impact
disease severity.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Matthew Eacker其他文献
Stephen Matthew Eacker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Matthew Eacker', 18)}}的其他基金
Chromosomal aberration detection in FFPE tissue using proximity ligation sequencing
使用邻近连接测序检测 FFPE 组织中的染色体畸变
- 批准号:
10759887 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
A next-generation method for cytogenomics using Hi-C proximity ligation sequencing
使用 Hi-C 邻近连接测序的下一代细胞基因组学方法
- 批准号:
10397703 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
A next-generation method for cytogenomics using Hi-C proximity ligation sequencing
使用 Hi-C 邻近连接测序的下一代细胞基因组学方法
- 批准号:
10389020 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
相似国自然基金
急性髓细胞白血病治疗新靶点RCN1的研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基于细胞力学特性的复发、难治性急性髓细胞白血病机理研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于顺序ICT-ESIPT机理多功能酶靶向的荧光染料及其在急性髓细胞白血病分型中的应用
- 批准号:22378100
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
线粒体ClpP激动剂通过铁死亡-免疫调控cross-talk治疗急性髓细胞白血病的机制研究
- 批准号:82370171
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
新型venetoclax衍生物A1靶向MDM2/Noxa/CyclinD1抗急性髓细胞白血病的研究
- 批准号:82304559
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MiDAC复合物在急性髓细胞白血病发病中的功能与调控机制研究
- 批准号:82370154
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于铁死亡相关基因构建儿童急性髓细胞白血病分子分型预测模型研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
全身MR成像研究急性髓细胞白血病肿瘤负荷及基于循环标记物表达的相关机制
- 批准号:82271982
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
ZMIZ1通过SUMO化急性髓细胞白血病(AML)相关转录因子介导AML异常转录调控网络的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
PTBP1-TNNT3-CDKN1A通路在急性髓细胞白血病耐药中的作用机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computing analysis of leukemic stem cell dynamics in acute myelocytic leukemia
急性粒细胞白血病白血病干细胞动力学的计算分析
- 批准号:
19K08356 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of immunotoxins with super-targeting mAb in the acute myelocytic leukemia
在急性髓细胞白血病中使用超靶向单克隆抗体产生免疫毒素
- 批准号:
23501309 - 财政年份:2011
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DETERMINANTS OF RESPONSE OF ACUTE MYELOCYTIC LEUKEMIA
急性粒细胞白血病反应的决定因素
- 批准号:
3556971 - 财政年份:1980
- 资助金额:
$ 100万 - 项目类别:
DETERMINANTS OF RESPONSE OF ACUTE MYELOCYTIC LEUKEMIA
急性粒细胞白血病反应的决定因素
- 批准号:
3556968 - 财政年份:1980
- 资助金额:
$ 100万 - 项目类别:
ERADICATION OF ACUTE MYELOCYTIC LEUKEMIA CELLS BY MAB THERAPY
通过 MAB 疗法根除急性粒细胞白血病细胞
- 批准号:
3889304 - 财政年份:
- 资助金额:
$ 100万 - 项目类别: