In vivo feasibility of a smart needle ablation treatment for liver cancer

智能针消融治疗肝癌的体内可行性

基本信息

  • 批准号:
    10699190
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary A significant number (~30-50%) of liver cancers have no curative treatments due to their proximity to critical anatomy. Minimally invasive thermal ablation is a promising treatment for these untreatable solid tumors. If delivered precisely, ablations offer the treatment efficacy of traditional surgery with lower patient risk, clinician time, and overall cost. Existing ablation technology, however, does not offer the necessary precision. Ablation tools do not provide feedback on (1) whether or not the probe has been accurately placed within the tumor, (2) if the tumor has been completely destroyed, or (3) if surrounding healthy tissue has been left intact. Because of this lack of precision and feedback, ablation cannot currently be used to treat tumors near critical anatomy. A proposed solution to these currently untreatable cancers is an ultraprecise ablation needle, embedded with high-resolution ultrasound sensors at its tip. These sensors will provide multiple benefits: aiding the clinician in placing the device correctly by imaging the tumor relative to the needle, delivering the treatment energy to a precise location through focusing, and providing real-time monitoring of the procedure by detecting the thermal changes in tissue-all without the need for a large imaging system. This innovation will allow surgeons to complete an ablation with the required precision to treat even the most difficult-to-reach cancers. This Phase 1 SBIR proposal will demonstrate the capabilities of small-scale ultrasound transducers to precisely control ablations near critical anatomical structures (e.g., arteries) in an in vivo porcine model through three specific aims: (1) optimization of previously developed ultrasound-based ablation zone estimation in ex vivo liver tissue using deep learning and physics-based simulations, (2) ablation zone estimation in an in vivo porcine liver model, and (3) demonstration of in vivo closed-loop ablation zone control near critical anatomy (artery in liver). Completion of this phase will demonstrate the key technology in a pilot animal study, where Phase 2 work would address critical development milestones to commercialization for an anticipated Class 2 device (approval via de nova regulatory pathway).
项目摘要 相当多的肝癌(约30-50%)由于其接近临界点而没有治愈性治疗。 解剖学微创热消融术是治疗这些无法治疗的实体瘤的一种有前途的治疗方法。如果 消融精确,提供了传统手术的治疗效果,降低了患者风险, 临床医生时间和总成本。然而,现有的消融技术不能提供必要的精度。 消融工具不提供以下反馈:(1)探头是否已准确放置在 肿瘤,(2)如果肿瘤已被完全破坏,或(3)如果周围的健康组织已被留下 完整由于缺乏精确度和反馈,消融术目前不能用于治疗肿瘤近 关键解剖学 针对这些目前无法治疗的癌症提出的解决方案是一种超精密消融针, 高分辨率的超声波传感器这些传感器将提供多种益处: 在通过相对于针对肿瘤进行成像而正确地放置装置时, 通过聚焦精确定位,并通过检测 组织中的热变化-所有这些都不需要大型成像系统。这项创新将使 外科医生能够以所需的精确度完成消融,以治疗即使是最难到达的癌症。 该第1阶段SBIR提案将证明小型超声换能器的能力, 精确控制关键解剖结构附近的消融(例如,动脉)中的一种 通过三个具体目标:(1)优化先前开发的基于超声的消融区域 使用深度学习和基于物理的模拟在离体肝脏组织中进行估计,(2)消融区 体内猪肝模型中的估计,以及(3)体内闭环消融区的证明 控制关键解剖结构附近(肝脏中的动脉)。这一阶段的完成将展示关键技术 在一项试点动物研究中,第2阶段工作将解决关键的发展里程碑, 预期2类器械的商业化(通过de nova监管途径获得批准)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alireza Mashal其他文献

Alireza Mashal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了