Multi-nuclear Iron Clusters as Biomimics of Nitrogenase Enzyme Metallocofactors
多核铁簇作为固氮酶金属辅因子的仿生
基本信息
- 批准号:10700023
- 负责人:
- 金额:$ 6.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcetyleneActive SitesAffectAlkanesAminesArchitectureAtmosphereBindingBiologicalBiological AvailabilityBiological ModelsBiologyBiomimeticsCellsChemicalsChemistryComplexDevelopmentElectrolysesElectron Spin Resonance SpectroscopyElementsEnzymesEventFaceGenerationsGoalsHumanIonsIronLifeLigandsMagnetometriesMediatingMediationMethodsModelingMolecularMolecular StructureMonitorMononuclearNatureNitrogenNitrogenaseNuclearNucleic AcidsOxidantsOxidation-ReductionOxidesPeriodicityProcessProductionProgram DescriptionPropertyProteinsProtonsReactionReagentReducing AgentsResearchRoleRouteSiteSourceSpectrum AnalysisStructureStudy modelsSulfidesSystemTestingTransition ElementsWorkX ray diffraction analysisanalogbiological systemscofactordesignelectronic structurefunctional mimicsmetal complexrole modelsample fixationscaffoldsmall molecule
项目摘要
Project Summary/Abstract
Entry of nitrogen into the biosphere is crucial for the development and sustainability of life, as this element is
utilized in the development of proteins, nucleic acids, and other cell constituents. Nature uses nitrogenase
enzymes to mediate the transformation of the bioinactive atmospheric N2 into more reactive nitrogen sources
such as NH3. Ubiquitous to all nitrogenase enzymes are multi-nuclear transition metal cofactors which act as the
active site for N2 binding, reduction, and transformation into its reduced substrates. Despite the foundational role
of the N2 fixation cycle to biology, the detailed mechanism of how nitrogenase enzyme metallocofactors facilitate
N2 fixation is largely uncertain. Synthetic chemists are actively pursuing mechanistic elucidation of the N2 fixation
by nitrogenase metallocofactors by using coordination chemistry to design molecular architectures which can
bind and reduce N2. Significant progress has been made in this regard, especially in terms of the reduction of N2
with mononuclear transition metal compounds, but it is in question whether mononuclear systems provide
accurate models for polynuclear metallocofactor sites. To this end, the use of polynuclear high-spin transition
metal complexes as functional models for nitrogenase metallocofactors have been much less explored. The
research program described herein involves the synthesis, characterization, and reactivity of new all monovalent
[Fe3] molecular architectures which we propose could be functional models to explore the mechanism of the Fe-
Mo cofactor (FeMoco) of nitrogenase. Initially, a new trianionic, hexadentate, ligand scaffold [NPL]3- will be
synthesized which can support three monovalent first-row transition metal ions. The trimetallation of [NPL]3- with
monovalent Fe(I) will be carried out to form the proposed monovalent tri-iron complex, (NPL)Fe3. Single-crystal
X-ray diffraction, SQUID magnetometry, EPR spectroscopy, and cyclic voltammetry will be used to determine
the structure, spin-state, and redox properties of (NPL)Fe3. The reactivity of the new [Fe3] cluster will be evaluated
by reacting (NPL)Fe3 with simple chemical oxidants and nitrogenase substrates (i.e. N2 and CO). Compound
(NPL)Fe3 will be subjected to reactions with oxidative N-group transfer reagents or N2 surrogates to establish the
N-bound intermediates involved on the way to full N2 conversion. The oxidative group transfer reactivity of
(NPL)Fe3 will also be explored using S-, O-, and C- group transfer reagents where the proposed sulfide complex,
[(NPL)Fe3(µ3-S)]-, will be used to model the role of sulfide ligands in the N2 fixation of FeMoco. We will synthesize
mono- and poly-hydride complexes, (NPL)Fe3H1-3, which could act as synthetic models for the E4 state of FeMoco,
which is the intermediate proposed to bind N2. The reactivity of the hydride complexes will be explored with
nitrogenase substrates such as N2, CO, and acetylene and the formation of the reduced amine of alkane
substrates will be monitored. For promising model complexes, the efficacy of catalytic N2 or CO reduction will be
investigated in the presence of a suitable chemical H+/e- sources or via electrolysis. If successful, these studies
are predicted to elucidate key mechanistic steps of the N2 reduction process of FeMoco.
项目总结/摘要
氮进入生物圈对生命的发展和可持续性至关重要,因为这种元素
用于蛋白质、核酸和其他细胞成分的开发。大自然利用固氮酶
酶介导的生物惰性的大气氮转化为更具活性的氮源
例如NH3。多核过渡金属辅因子普遍存在于所有固氮酶中,
N2结合、还原和转化为其还原底物的活性位点。尽管它的基础作用
固氮循环的生物学,固氮酶金属辅因子如何促进的详细机制,
N2固定在很大程度上是不确定的。合成化学家们正在积极地寻求N2固定的机理解释
通过使用配位化学来设计分子结构,
结合并还原N2。在这方面取得了重大进展,特别是在减少N2排放方面。
单核过渡金属化合物,但单核系统是否提供
多核金属辅因子位点的精确模型。为此,利用多核高自旋跃迁
金属配合物作为固氮酶金属辅因子的功能模型的研究要少得多。的
本文所述的研究计划涉及新的全单价化合物的合成、表征和反应性。
[Fe3]我们提出的分子结构可以作为功能模型来探索Fe-
固氮酶的Mo辅因子(FeMoco)。最初,一种新的三阴离子,六齿,配体支架[NPL]3-将被合成。
合成了能够负载三个一价第一行过渡金属离子的化合物。[NPL]3-的三次甲基化,
将进行一价Fe(I)的还原以形成所提出的一价三铁络合物(NPL)Fe 3。单晶
X射线衍射、SQUID磁力测定法、EPR光谱法和循环伏安法将用于确定
(NPL)Fe 3的结构、自旋态和氧化还原性质。新的[Fe 3]簇的反应性将被评估
通过使(NPL)Fe 3与简单的化学氧化剂和固氮酶底物(即N2和CO)反应。化合物
(NPL)Fe 3将与氧化性N-基团转移试剂或N2替代物进行反应,以建立
N-结合的中间体参与的方式,以充分的N2转化。的氧化基团转移反应性
(NPL)Fe 3也将使用S-、O-和C-基团转移试剂进行探索,其中所提出的硫化物络合物,
[(NPL)Fe 3(µ3-S)]-将用于模拟硫化物配体在FeMoco的N2固定中的作用。我们将合成
单氢化物和多氢化物络合物(NPL)Fe 3 H1 -3,其可以充当FeMoco的E4状态的合成模型,
其是提议结合N2的中间体。氢化物络合物的反应性将用
固氮酶底物如N2、CO和乙炔以及烷烃的还原胺的形成
将监测基质。对于有前景的模型络合物,催化N2或CO还原的功效将是
在合适的化学H+/e-源的存在下或通过电解进行研究。如果成功,这些研究
的预测,以阐明FeMoco的N2还原过程的关键机械步骤。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Trevor Latendresse其他文献
Trevor Latendresse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Trevor Latendresse', 18)}}的其他基金
Multi-nuclear Iron Clusters as Biomimics of Nitrogenase Enzyme Metallocofactors
多核铁簇作为固氮酶金属辅因子的仿生
- 批准号:
10536804 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 6.95万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 6.95万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 6.95万 - 项目类别:
Discovery Grants Program - Individual