Whole Transcriptome Studies of Blood to Predict Stroke Outcome
预测中风结果的血液全转录组研究
基本信息
- 批准号:10655229
- 负责人:
- 金额:$ 64.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAMPA ReceptorsAgeAnti-Inflammatory AgentsAtrial FibrillationBiological MarkersBiologyBloodBlood PlateletsBlood PressureBrainBrain-Derived Neurotrophic FactorC-reactive proteinClinicalClinical TrialsCoagulation ProcessCytochrome P450DataDerivation procedureDiabetes MellitusEngineeringEnvironmentEtiologyFutureGene ExpressionGenesGenetic MarkersGenomeGlucoseGrowth FactorHMGB1 geneHeat shock proteinsHemoglobin concentration resultHumanHyperlipidemiaIL6 geneITGB3 geneImmuneInfectionInflammatoryInterleukin-1Interleukin-10Ischemic StrokeKnowledgeLeukocytesLife StyleLightLocationLogistic RegressionsLymphocyte CountMachine LearningMeasuresMolecularNeurologicOutcomeOutcome MeasurePARK2 genePTGS2 genePathway AnalysisPathway interactionsPatientsPatternPhosphoric Monoester HydrolasesPlatelet Count measurementPrognosisProteinsRNARecoveryRegulator GenesSensitivity and SpecificitySeveritiesStrokeStroke VolumeSystemTNF geneUnited States National Institutes of HealthValidationcohortcytokinefunctional outcomesgene networkgenetic risk factorimprovedindexingkidney dysfunctionmachine learning algorithmmachine learning predictionmolecular markermonocyteneurofilamentneuronal excitabilityneutrophiloutcome predictionpatient stratificationperipheral bloodpost strokepresynapticrepairedresponsesexstatisticsstroke outcomestroke patientsuccesssupport vector machinetranscriptometranscriptome sequencingvascular risk factorwhole genome
项目摘要
Abstract
Several clinical variables are associated with outcomes following ischemic stroke (IS). However, clinical
and demographic parameters account only for a portion of the outcome variance, thus it is difficult for clinicians
to reliably predict long-term IS outcome. Hence, new biomarkers are needed. Molecules in blood are also
associated with IS outcome including pro-inflammatory cytokines, anti-inflammatory cytokines and others.
Genetic risk factors have also been associated with IS outcome. Unfortunately, combined blood and genetic
biomarkers have not improved IS outcome predictions compared to clinical parameters since age, sex and
initial NIHSS is said to predict outcome with a modest c-statistic approaching 0.7. Our preliminary data show
gene expression in blood after IS can predict 90-day outcome better than age, sex and NIHSS. We
hypothesize that a whole-genome approach of measuring RNA, which reflects the genome × environment ×
lifestyle interaction, to assess inflammatory, trophic and clotting genes will improve IS outcome prediction
compared to clinical features alone. Thus, we propose the following aims: Aim #1a. Perform whole-genome
RNA sequencing (RNAseq) of blood on a derivation cohort of IS patients at 1 day and 3 days after IS
compared to matched vascular risk factor controls (VRFC). Aim #1b. Identify the most significantly regulated
genes and pathways in blood at 1d/3d after IS that correlate with outcome, as measured by three outcome
scales – mRS (modified Rankin Scale), NIHSS (NIH Stroke Scale) and Barthel Index at 90 days after IS. Aim
#1c. Use Network Analysis to identify key hub genes after IS associated with outcome that might be causative.
Aim #1d. Use Feature Engineering and Logistic Regression and/or other Machine Learning approaches, such
as Support Vector Machines (SVM) and SVM Regression, to identify the least number of genes at 1 and/or 3
days that predict the three stroke 90-day outcome measures. Aim #1e. In a separate validation cohort of IS
patients perform RNAseq to obtain the expression of the biomarker genes from Aim #1d. Input these into
Machine Learning algorithms to predict patient 90-day outcomes (mRS, NIHSS, Barthel Index). Aim #2a.
Demonstrate that gene expression is a better 90-day outcome predictor compared to each or a combination of
clinical variables, such as stroke volume, initial NIHSS, location, etiology, age, sex, glucose levels, blood
pressure, atrial fibrillation, and neutrophil, monocyte, lymphocyte, and platelet counts. Aim #2b. Delineate the
underlying biology of these clinical outcome contributors by identifying genes and networks that correlate with
them and pinpoint which of the genes/networks also correlate with each of the three outcomes.
Significance: The findings of this study will develop biomarkers of ischemic stroke outcome to help clinicians
predict IS outcome and aid future clinical trials in stratifying IS patients, thus significantly increasing chances
for trial success. Equally important, the findings will provide much needed potential new treatment targets and
unprecedented knowledge of how the peripheral blood transcriptome contributes to outcome and improve our
understanding of the biology of repair and recovery after IS in humans.
抽象的
几个临床变量与缺血性中风后的结果相关。但是,临床
人口参数仅占结果差异的一部分,因此临床医生很难
可靠地预测长期是结果。因此,需要新的生物标志物。血液中的分子也是
与IS结果有关,包括促炎性细胞因子,抗炎细胞因子等。
遗传危险因素也与结果有关。不幸的是,血液和遗传结合
与年龄,性别和性别以来的临床参数相比,生物标志物没有改善是结果预测
据说最初的NIHSS可以通过适度的C统计方法预测结果0.7。我们的初步数据显示
血液中血液中的基因表达可以预测90天的结果比年龄,性别和NIHSS更好。我们
假设是测量RNA的全基因组方法,它反映了基因组×环境×
生活方式相互作用,评估炎症,营养和闭合基因将改善结果预测
与仅临床特征相比。这是我们提出以下目标:目标#1a。执行全基因组
在IS 1天和3天后,在IS的衍生组中,血液的RNA测序(RNASEQ)
与匹配的血管风险因素控制(VRFC)相比。目标#1B。确定最重要的监管
通过三个结果来衡量,在1D/3D的血液中的基因和途径与结果相关
量表 - MRS(改良的Rankin量表),NIHSS(NIH中风量表)和Barthel指数在IS之后的90天。目的
#1C。使用网络分析以识别关键集线器基因与可能是病因的结果相关联。
目标#1D。使用功能工程和逻辑回归和/或其他机器学习方法,例如
作为支持向量机(SVM)和SVM回归,以确定1和/或3的最少基因
预测三个中风90天的结果度量的天数。目标#1E。在单独的验证队列中
患者进行RNASEQ以从AIM#1D获得生物标志物基因的表达。将这些输入
机器学习算法可预测患者90天的结果(MRS,NIHSS,Barthel指数)。目标#2A。
证明基因表达是一个更好的90天结果预测指标
临床变量,例如中风量,初始NIHS,位置,病因,年龄,性别,葡萄糖水平,血液
压力,心房颤动和中性粒细胞,单核细胞,淋巴细胞和血小板计数。目标#2B。描述
这些临床结果贡献者的潜在生物学通过鉴定与与之相关的基因和网络
他们并指出了哪些基因/网络也与三个结果中的每一个相关。
意义:这项研究的结果将发展出缺血性中风结果的生物标志物,以帮助临床医生
预测是结果,并在分层中有助于未来的临床试验是患者,因此大大增加了机会
取得审判成功。同样重要的是,调查结果将提供急需的潜在新治疗目标和
关于周围血液转录组如何有助于结果并改善我们的前所未有的知识
在人类中了解修复和恢复的生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley Pearce Ander其他文献
Bradley Pearce Ander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley Pearce Ander', 18)}}的其他基金
Biomarker Signatures for Delayed Cerebral Ischemia and Outcome Following Subarachnoid Hemorrhage
迟发性脑缺血的生物标志物特征和蛛网膜下腔出血后的结果
- 批准号:
10543126 - 财政年份:2021
- 资助金额:
$ 64.19万 - 项目类别:
Biomarker Signatures for Delayed Cerebral Ischemia and Outcome Following Subarachnoid Hemorrhage
迟发性脑缺血的生物标志物特征和蛛网膜下腔出血后的结果
- 批准号:
10322173 - 财政年份:2021
- 资助金额:
$ 64.19万 - 项目类别:
Genomics of Intracerebral Hemorrhage and its Causes
脑出血的基因组学及其病因
- 批准号:
9898489 - 财政年份:2019
- 资助金额:
$ 64.19万 - 项目类别:
Genomics of Intracerebral Hemorrhage and its Causes
脑出血的基因组学及其病因
- 批准号:
10322409 - 财政年份:2019
- 资助金额:
$ 64.19万 - 项目类别:
Genomics of Intracerebral Hemorrhage and its Causes
脑出血的基因组学及其病因
- 批准号:
10551861 - 财政年份:2019
- 资助金额:
$ 64.19万 - 项目类别:
Genomics of Intracerebral Hemorrhage and its Causes
脑出血的基因组学及其病因
- 批准号:
10084327 - 财政年份:2019
- 资助金额:
$ 64.19万 - 项目类别:
相似国自然基金
ABHD6与AMPA受体结合位点的鉴定及该位点在AMPA受体转运和功能调控中的作用研究
- 批准号:32300794
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SNX32棕榈酰化修饰调控AMPA受体介导的突触可塑性在AD中的作用机制
- 批准号:32360219
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
翻译水平选择性调控皮层AMPA受体表达促进神经元形态功能发育及神经环路塑造的分子机制及生理功能研究
- 批准号:32360194
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
AMPA受体正向变构调节剂快速抗抑郁作用及其神经机制研究
- 批准号:82371524
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
基于奖赏环路内AMPA受体相关的突触可塑性变化探讨痫蛋白在抑郁症发病中的作用及机制
- 批准号:82360277
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
相似海外基金
Super-Resolution Fluorescence Microscopy of Synaptic Plasticity on Unmodified Brain Slices in Health and Tauopathy
健康和 Tau 病未修饰脑切片突触可塑性的超分辨率荧光显微镜
- 批准号:
10729062 - 财政年份:2023
- 资助金额:
$ 64.19万 - 项目类别:
Tau-Fyn Interaction and Alzheimer's Disease
Tau-Fyn 相互作用与阿尔茨海默病
- 批准号:
10292907 - 财政年份:2020
- 资助金额:
$ 64.19万 - 项目类别:
Chronic nicotine and synaptic transmission in brainstem respiratory neurons
脑干呼吸神经元的慢性尼古丁和突触传递
- 批准号:
8371126 - 财政年份:2012
- 资助金额:
$ 64.19万 - 项目类别:
Chronic nicotine and synaptic transmission in brainstem respiratory neurons
脑干呼吸神经元的慢性尼古丁和突触传递
- 批准号:
8508277 - 财政年份:2012
- 资助金额:
$ 64.19万 - 项目类别:
Chronic nicotine and synaptic transmission in brainstem respiratory neurons
脑干呼吸神经元的慢性尼古丁和突触传递
- 批准号:
8856286 - 财政年份:2012
- 资助金额:
$ 64.19万 - 项目类别: