Dynamic probes of endogenous protein aggregation and cell signaling
内源蛋白聚集和细胞信号传导的动态探针
基本信息
- 批准号:10655952
- 负责人:
- 金额:$ 4.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:BehaviorBiochemical ProcessBiosensorCancer ModelCell Culture TechniquesCellsDevelopmentDiseaseEngineeringFutureGenetic TranscriptionGenomicsGoalsIn VitroInstructionIntestinesMalignant NeoplasmsMicroscopyMissionModelingModificationMolecular ProbesNational Institute of General Medical SciencesNerve DegenerationOrganoidsPathway interactionsPatternPhasePhysiologicalPhysiological ProcessesPhysiologyProteinsReporterReportingSignal PathwaySignal TransductionSignaling ProteinTimeTissuesVisible RadiationVisualizationWNT Signaling PathwayWorkaggregation pathwaydesignexperimental studyhuman diseaseinterestnoveloptogeneticsoverexpressionprotein aggregationreceptorresponsesensorsimulationspatiotemporalsuccesstool
项目摘要
Project
Summary/Abstract:
The dynamics of cell signals are instructive features that guide cell and tissue behavior. Yet, many important
pathways, like the Wnt/-catenin pathway, lack probes to observe and dissect endogenous signal dynamics
with precision in space and in time. The overall goal of this proposal is to develop novel molecular probes that
can visualize and perturb endogenous signal dynamics, with a focus on the Wnt/-catenin pathway. Our
proposal is divided into two projects. In the first project, we will develop a novel fluorescent biosensor to enable
direct visualization of Wnt signal dynamics. Existing Wnt reporters can be dim and require genomic
engineering of the target cell, act on slow transcriptional timescales that can obscure the upstream pathway
dynamics, and provide no spatial information about the input Wnt signal. Because Wnt stimulation requires the
aggregation of pathway co-receptor LRP6, observation of LRP6 oligomerization could provide a
spatiotemporally resolved readout of pathway activity. We thus envision a new class of biosensor that allows
observation of the aggregation of intracellular proteins. Our reporter must meet two important design criteria.
First, it must report on endogenous protein clustering to avoid overexpression of signaling proteins or genomic
modifications. Second, because physiological protein aggregates are small and often below the diffraction limit
of visible light, our reporter must “visually amplify” endogenous clusters such that they are visible by
conventional microscopy. We describe plans to develop, characterize, and apply such a reporter, called
CluMPS. CluMPS visually magnifies small endogenous protein clusters through principles of protein phase
separation. Using both experiments and simulations, we will characterize the ability of CluMPS to detect and
amplify intracellular protein aggregates, using optogenetic clustering of GFP as a model analyte. We will then
apply CluMPS to detect clusters of endogenous proteins known to form physiological aggregates. Finally, we
will apply CluMPS to detect the clustering of endogenous Wnt receptor LRP6 in response to cellular Wnt
stimulation, and we will validate LRP6-CluMPS activity in cell, tissue, and developmental models. The
modularity of CluMPS will allow its adaptation to generate sensors of diverse signaling pathways and cell
states. In the second project, we will engineer the first optogenetic tools to allow inhibition of endogenous
signaling pathways with spatiotemporal precision. We will target inhibition of both Wnt/-catenin signaling and,
separately, Ras-Erk signaling. We will validate successful pathway inhibition in the context of cell culture
models of cancer and patterning of in vitro intestinal organoids. Notably, all of our probes will be designed in a
modular fashion and thus could be readily modified to observe or inhibit diverse targets of interest. Success in
our work will result in a suite of new tools to observe, perturb, and understand the fundamental biochemical
processes that underlie normal physiology and its breakdown in disease, in close alignment with the central
mission of NIGMS.
项目
总结/摘要:
细胞信号的动力学是指导细胞和组织行为的指导性特征。然而,许多重要的
像Wnt/β-连环蛋白通路这样的信号通路,缺乏观察和分析内源性信号动力学的探针
在空间和时间上都是精确的。该提案的总体目标是开发新的分子探针,
可以可视化和干扰内源性信号动力学,重点是Wnt/β-连环蛋白途径。我们
提案分为两个项目。在第一个项目中,我们将开发一种新型的荧光生物传感器,
Wnt信号动力学的直接可视化。现有的Wnt报告基因可能是暗淡的,并且需要基因组测序。
靶细胞的工程化,作用于缓慢的转录时间尺度,这可能会掩盖上游途径
动态,并且不提供关于输入Wnt信号的空间信息。因为Wnt刺激需要
途径共受体LRP 6的聚集,LRP 6寡聚化的观察可以提供
时空分辨读出通路活性。因此,我们设想了一类新的生物传感器,
观察细胞内蛋白质的聚集。我们的记者必须满足两个重要的设计标准。
首先,它必须报告内源性蛋白质聚集,以避免信号蛋白或基因组蛋白的过度表达。
修改.第二,因为生理蛋白质聚集体很小,常常低于衍射极限
在可见光下,我们的记者必须“视觉放大”内源性集群,使它们可见,
常规显微镜。我们描述了开发、表征和应用这样一种报告器的计划,称为
Clumps。CluMPS通过蛋白质相位原理,在视觉上放大了小的内源性蛋白质簇
分居使用实验和模拟,我们将描述CluMPS的检测能力,
扩增细胞内蛋白质聚集体,使用GFP的光遗传学聚类作为模型分析物。然后我们将
应用CluMPS检测已知形成生理聚集体的内源性蛋白质簇。最后我们
将应用CluMPS检测响应于细胞Wnt的内源性Wnt受体LRP 6的聚集
刺激,并且我们将在细胞、组织和发育模型中验证HPLRP 6-CluMPS活性。的
CluMPS的模块化将允许其适应产生不同信号传导途径和细胞的传感器。
states.在第二个项目中,我们将设计第一个光遗传学工具,以允许抑制内源性
时空精确的信号通路。我们将靶向抑制Wnt/β-连环蛋白信号传导,
分别是Ras-Erk信号我们将在细胞培养的背景下验证成功的途径抑制
癌症模型和体外肠类器官的模式化。值得注意的是,我们所有的探测器都将设计成
模块化的方式,因此可以容易地进行修改,以观察或抑制不同的目标。成功
我们的工作将产生一套新工具来观察、扰动和理解基本的生化反应
这些过程是正常生理学的基础,在疾病中也是崩溃的基础,与中枢神经系统密切相关。
NIGMS的使命。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lukasz Bugaj其他文献
Lukasz Bugaj的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lukasz Bugaj', 18)}}的其他基金
Dynamic probes of endogenous protein aggregation and cell signaling
内源蛋白聚集和细胞信号传导的动态探针
- 批准号:
10029409 - 财政年份:2020
- 资助金额:
$ 4.72万 - 项目类别:
Dynamic probes of endogenous protein aggregation and cell signaling
内源蛋白聚集和细胞信号传导的动态探针
- 批准号:
10457270 - 财政年份:2020
- 资助金额:
$ 4.72万 - 项目类别:
Dynamic probes of endogenous protein aggregation and cell signaling
内源蛋白聚集和细胞信号传导的动态探针
- 批准号:
10414499 - 财政年份:2020
- 资助金额:
$ 4.72万 - 项目类别:
Acquisition of a confocal microscope for imaging and controlling intracellular signals
获取用于成像和控制细胞内信号的共焦显微镜
- 批准号:
10582253 - 财政年份:2020
- 资助金额:
$ 4.72万 - 项目类别:
Developing CluMPS reporters to visualize aggregation dynamics of receptor tyrosine kinase fusions
开发 CluMPS 报告基因以可视化受体酪氨酸激酶融合的聚集动态
- 批准号:
10321062 - 财政年份:2020
- 资助金额:
$ 4.72万 - 项目类别:
Dynamic probes of endogenous protein aggregation and cell signaling
内源蛋白聚集和细胞信号传导的动态探针
- 批准号:
10225592 - 财政年份:2020
- 资助金额:
$ 4.72万 - 项目类别:
Dynamic probes of endogenous protein aggregation and cell signaling
内源蛋白聚集和细胞信号传导的动态探针
- 批准号:
10669601 - 财政年份:2020
- 资助金额:
$ 4.72万 - 项目类别:
相似海外基金
Biochemical process of membrane-associated protein is induced by inflammatory cytokines in cultured lymphatic endothelial cells
培养的淋巴内皮细胞中炎症细胞因子诱导膜相关蛋白的生化过程
- 批准号:
23390283 - 财政年份:2011
- 资助金额:
$ 4.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Biochemical Process of Ischemic Injury of Liver and Protection against the Injury.
肝脏缺血性损伤的生化过程及其防护。
- 批准号:
61480130 - 财政年份:1986
- 资助金额:
$ 4.72万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)