Dendritic morphology, patterns of input, and calcium signal heterogeneity in a novel subpopulation of cerebellar Purkinje cells
小脑浦肯野细胞新亚群的树突形态、输入模式和钙信号异质性
基本信息
- 批准号:10656273
- 负责人:
- 金额:$ 4.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyAnimalsArchitectureAtaxiaAxonCalciumCalcium SignalingCell physiologyCellsCellular MorphologyCerebellar CortexCerebellar DiseasesCerebellumCharacteristicsCognitiveComplexData AnalysesDendritesDependenceDevelopmentDiseaseEducational process of instructingElectrophysiology (science)ElementsEmotionalEssential TremorEventExhibitsFiberFrequenciesFunctional disorderGoalsHeterogeneityImageIn VitroIndividualInferiorKnowledgeLearningMeasurableMediatingMethodsModalityMorphologyMotorMusNeuronsOlives - dietaryOutputPathway interactionsPatternPerformancePhysiologicalPhysiologyPicrotoxinPreparationPresynaptic TerminalsProcessPurkinje CellsResearchResearch PersonnelRestRoleRunningSensorySeveritiesSignal TransductionSourceStructure-Activity RelationshipSystemTechniquesTestingTracerTrainingTreesUpdateWorkautism spectrum disorderawakecell typeconfocal imagingdesignexperimental studygranule cellin vivoinsightmouse modelmultimodalitymultisensorynerve supplynetwork modelsneural networkneuronal cell bodynoveloperationoverexpressionpatch clampresponsesegregationsensory inputtargeted treatmenttheoriestwo-photon
项目摘要
Project Summary
The cerebellum optimizes motor and non-motor performance by integrating input signals encoding
prediction error with input relaying a spectrum of multisensory and contextual information. These input
pathways–carried by climbing fiber axons (CFs) from the inferior olive and parallel fiber axons (PFs) of
cerebellar granule cells, respectively–converge on the elaborate dendritic arbor of Purkinje cells (PCs), the
primary cell type and sole output of the cerebellar cortex. Theories of cerebellar function are centered around
PC-mediated integration and rely on the principles that each PC: 1) is a structurally and functionally redundant
unit in the cerebellar cortex, 2) receives olivary ‘teaching’ signal input from only one CF, and 3) exhibits
homogenous signaling across the entire dendritic tree.
The specific aims of this proposal are designed to challenge the universality of these principles by
revealing a ‘super-integrator’ PC subpopulation characterized by input from multiple CFs and non-homogenous
signaling across dendrites. These PCs are defined morphologically by segregated dendritic compartments
from either the early bifurcation of their primary dendrite (‘Split’) or multiple primary dendrites emerging from
the soma (‘Poly’). ‘Super-integrator’ PCs are defined functionally by the presence of non-homogenous dendritic
signaling produced by independent input to each compartment, such as from multi-CF innervation.
This study will examine the anatomical CF→PC connection, describe signal heterogeneity in PC dendritic
compartments, and examine how these functional elements affect integration during multisensory processing.
To comprehensively assess these anatomical and functional features of PCs, experiments will be balanced
between tightly controlled in vitro preparations and physiologically relevant in vivo conditions and will combine
electrophysiology, Ca2+ imaging, and tracer immunolabeling methods. A central training goal of this proposal is
to learn and apply a range of techniques, especially by pairing Ca2+ imaging and electrophysiology, and data
analysis methods toward my development as an independent researcher.
The final results of this work will provide a significant update to our current understanding of fundamental
cerebellar anatomy and function. This update will introduce a panel of new research questions to better
understand task-dependent cerebellar computations, expansion and compression of information as it flows
through cerebellar circuits, and sources of dysfunction in disease as putative targets for therapy. Some
features of ‘super-integrator’ PCs in wildtype animals (e.g. abnormal CF inputs and multi-compartment
morphology) overlap with features that are overexpressed in mouse models of autism spectrum disorder. It is
possible that, in addition to conferring normal cerebellar function, an overabundance of ‘super-integrator’ PCs
may underlie some characteristics of cerebellar dysfunction in autism.
项目摘要
小脑通过整合输入信号编码来优化运动和非运动性能
预测错误与输入中继频谱的多感官和上下文信息。这些输入
由下橄榄核的攀爬纤维轴突(CF)和下橄榄核的平行纤维轴突(PF)携带的路径
小脑颗粒细胞,分别聚集在浦肯野细胞(PC)的精心树突状乔木,
小脑皮质的主要细胞类型和唯一输出。小脑功能的理论主要围绕
PC介导的整合和依赖的原则,每个PC:1)是一个结构和功能冗余
单位在小脑皮质,2)接收橄榄'教学'信号输入,从只有一个CF,和3)展览
在整个树突树上都有相同的信号。
这项建议的具体目的是对这些原则的普遍性提出质疑,
揭示了一个“超级整合者”PC亚群,其特征在于来自多个CF的输入和非同质性
通过树突传递信号这些PC在形态学上由分离的树突区室定义
从它们的初级树突的早期分叉(“分裂”)或从它们的初级树突的多个分支中出现的多个初级树突,
索马(Poly)。“超级整合者”PC在功能上被定义为非同质树突状细胞的存在。
信号传导由对每个隔室的独立输入产生,例如来自多CF神经支配。
本研究将探讨CF→PC的解剖学联系,描述PC树突的信号异质性,
隔间,并研究这些功能元素如何影响多感觉处理过程中的整合。
为了全面评估PC的这些解剖和功能特征,实验将平衡
在严格控制的体外制剂和生理相关的体内条件之间,并将联合收割机
电生理学、Ca2+成像和示踪免疫标记方法。本建议的一个中心培训目标是
学习和应用一系列技术,特别是通过配对钙离子成像和电生理学,和数据
分析方法对我的发展作为一个独立的研究人员。
这项工作的最终结果将为我们目前对基本原理的理解提供重要的更新。
小脑的解剖和功能本次更新将引入一组新的研究问题,以更好地
了解与任务相关的小脑计算以及信息流动时的扩展和压缩
通过小脑回路,以及疾病中功能障碍的来源作为治疗的假定靶点。一些
野生型动物中“超级整合者”PC的特征(例如,异常CF输入和多隔室
形态学)与在自闭症谱系障碍的小鼠模型中过表达的特征重叠。是
除了赋予正常的小脑功能外,过量的“超级整合者”PC可能
可能是自闭症小脑功能障碍的一些特征的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Silas Edward Busch其他文献
Silas Edward Busch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Silas Edward Busch', 18)}}的其他基金
Dendritic morphology, patterns of input, and calcium signal heterogeneity in a novel subpopulation of cerebellar Purkinje cells
小脑浦肯野细胞新亚群的树突形态、输入模式和钙信号异质性
- 批准号:
10534975 - 财政年份:2022
- 资助金额:
$ 4.76万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 4.76万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 4.76万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 4.76万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 4.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 4.76万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 4.76万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 4.76万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 4.76万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 4.76万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 4.76万 - 项目类别:
Studentship