Improving Proinsulin Folding to Ameliorate Type II Diabetes
改善胰岛素原折叠以改善 II 型糖尿病
基本信息
- 批准号:10657292
- 负责人:
- 金额:$ 80.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-05 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAttenuatedBeta CellBindingBiochemicalBiogenesisBiological AssayCell LineCell physiologyCellsCessation of lifeComplexConfocal MicroscopyDataDevelopmentDiabetes MellitusDiseaseDisulfidesEndoplasmic ReticulumEnvironmentEpitopesFailureFunctional disorderGeneticGenetic ModelsGrantHealthHealth ExpendituresHeat-Shock Proteins 70HomeostasisHormonesHumanIndividualInsulinInsulin ResistanceInterventionIslets of LangerhansLinkMaintenanceMapsMeasuresMissionModelingMolecularMolecular ChaperonesMolecular WeightMusNational Institute of Diabetes and Digestive and Kidney DiseasesNatureNon-Insulin-Dependent Diabetes MellitusOxidoreductasePathogenesisPathway interactionsPatientsPersonsPharmaceutical PreparationsPhysiologicalPrediabetes syndromePredispositionProductionProductivityProinsulinProteinsReporterReportingSeriesSeveritiesStructure of beta Cell of isletTimeVariantanterograde transportcofactorcrosslinkdisulfide bondfunctional lossgain of functiongenome wide association studyimprovedisletloss of functionmonomermouse modelnovelpharmacologicpreventresponsesuperresolution microscopytooltrafficking
项目摘要
Project Summary
Diabetes is among the fastest growing health challenges of the 21st century, affecting >30 million people, with
≥80,000 deaths annually, and involving ~15% of U.S. national health expenditures. Type 2 diabetes (T2D) is
the most common form of diabetes, which is linked to an insufficient amount of circulating insulin because of
the body’s insensitivity to the hormone. Maintenance of the insulin storage pool requires synthesis of ~6000
proinsulin (PI) molecules/ß-cell/second, each delivered to the endoplasmic reticulum (ER) for folding. Even
more molecules are needed in states of insulin resistance. Significantly, we discovered that PI enters aberrant
disulfide-linked intermolecular complexes, even in healthy (human and murine) islets. Under conditions that
demand increased insulin production (even prediabetes), these complexes dramatically increase, thus limiting
insulin production. We show new key evidence that these aberrantly folded PI complexes can be resolved to
monomeric PI within the ER. We recently elucidated the first map of the human PI interactome identifying PI
folding modifiers. The most significant PI interactor in human islets is the ER chaperone BiP and we present
new evidence (both gain of function, and loss of function) that this interaction, supported by BiP co-
chaperones, is absolutely required for productive proinsulin folding (and limiting misfolding), leading to
successful anterograde transport. For our studies we generated a novel BiP-tagged mouse that can for the
first time identify fundamental steps in PI folding essential for insulin production. Moreover, we show that
increased expression of BiP and its co-chaperone P58IPK dramatically reduces accumulation of the high
molecular weight PI complexes. Thus, our discoveries open the possibility that pharmacologic intervention may
improve chaperone-dependent PI folding, and this may attenuate T2D. As we begin to elucidate the human PI
folding pathway, we are developing parallel animal models to determine how PI folds/misfolds. Here we
propose to: 1) Mechanistically dissect how BiP and additional PI interactors in the ER orchestrate successful PI
folding and determine which step(s) of PI folding go awry in T2D; 2) Identify how the PI interactome changes
in human T2D; determine the function of altered PI interactions in islets from patients with T2D; and utilize
novel assays to measure productive PI folding/trafficking in ß-cells. We will integrate physiologic studies of
human islets with novel genetic and biochemical approaches to generate a comprehensive understanding of
how PI folding homeostasis impacts ß-cell function in health and disease. We believe that this hypothesis is a
high-impact idea essential to the mission of the NIDDK, and we now bring tools, assays, and approaches that
are not currently available anywhere else.
项目摘要
糖尿病是世纪增长最快的健康挑战之一,影响超过3000万人,
每年有≥ 80,000例死亡,占美国国家卫生支出的约15%。2型糖尿病(T2 D)是
糖尿病最常见的形式,这与循环胰岛素量不足有关,
身体对荷尔蒙不敏感胰岛素储存池的维护需要合成约6000
胰岛素原(PI)分子/β-细胞/秒,每个分子被递送到内质网(ER)进行折叠。甚至
在胰岛素抵抗状态下需要更多的分子。值得注意的是,我们发现PI进入异常
二硫键连接的分子间复合物,甚至在健康的(人和鼠)胰岛。的条件下
由于需要增加胰岛素产量(甚至是糖尿病前期),这些复合物急剧增加,从而限制了
胰岛素生产。我们展示了新的关键证据,这些异常折叠的PI复合物可以被解析为
ER内的单体PI。我们最近阐明了人类PI相互作用组的第一个图谱,
折叠修饰符人类胰岛中最重要的PI相互作用是ER伴侣BiP,我们提出
新的证据(功能的获得和功能的丧失)表明,这种相互作用,由BiP共同支持,
分子伴侣是生产性胰岛素原折叠(和限制错误折叠)所绝对需要的,导致
成功顺行运输。在我们的研究中,我们产生了一种新的BiP标记的小鼠,
第一次确定PI折叠的基本步骤对胰岛素的生产至关重要。此外,我们表明,
BiP及其辅助分子伴侣P58 IPK表达的增加显著降低了高浓度的
分子量PI络合物。因此,我们的发现开启了药物干预可能
改善分子伴侣依赖性PI折叠,这可以减弱T2 D。当我们开始阐明人类PI
折叠途径,我们正在开发平行的动物模型,以确定PI如何折叠/错误折叠。这里我们
建议:1)机械地剖析BiP和ER中的其他PI互动者如何协调成功的PI
折叠,并确定T2 D中PI折叠的哪些步骤出错; 2)确定PI相互作用组如何变化
在人T2 D中;确定来自T2 D患者的胰岛中改变的PI相互作用的功能;并利用
测量β-细胞中生产性PI折叠/运输的新测定法。我们将整合生理学研究,
人类胰岛与新的遗传和生物化学方法,以产生全面的了解,
PI折叠稳态如何影响健康和疾病中的β细胞功能。我们认为,这一假设是一个
高影响力的想法是NIDDK的使命必不可少的,我们现在带来的工具,分析,和方法,
目前在其他任何地方都没有。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER ARVAN其他文献
PETER ARVAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER ARVAN', 18)}}的其他基金
Endoplasmic Reticulum stress and thyroid cell death
内质网应激和甲状腺细胞死亡
- 批准号:
10595662 - 财政年份:2022
- 资助金额:
$ 80.96万 - 项目类别:
Endoplasmic Reticulum stress and thyroid cell death
内质网应激和甲状腺细胞死亡
- 批准号:
10414536 - 财政年份:2022
- 资助金额:
$ 80.96万 - 项目类别:
A Stress-Induced Vicious Cycle In The Development of T1D
压力诱发 T1D 发展的恶性循环
- 批准号:
10653099 - 财政年份:2020
- 资助金额:
$ 80.96万 - 项目类别:
A Stress-Induced Vicious Cycle In The Development of T1D
压力诱发 T1D 发展的恶性循环
- 批准号:
10262964 - 财政年份:2020
- 资助金额:
$ 80.96万 - 项目类别:
A Stress-Induced Vicious Cycle In The Development of T1D
压力诱发 T1D 发展的恶性循环
- 批准号:
10440524 - 财政年份:2020
- 资助金额:
$ 80.96万 - 项目类别:
Interplay Between SERPINB1 and TLR2/TLR4 in Beta Cell Regeneration
SERPINB1 和 TLR2/TLR4 在 Beta 细胞再生中的相互作用
- 批准号:
10531213 - 财政年份:2018
- 资助金额:
$ 80.96万 - 项目类别:
Secretory Pathway Protein Degradation Maintains Insulin Biogenesis + Secretion
分泌途径蛋白质降解维持胰岛素生物合成分泌
- 批准号:
10217112 - 财政年份:2016
- 资助金额:
$ 80.96万 - 项目类别:
Secretory Pathway Protein Degradation Maintains Insulin Biogenesis + Secretion
分泌途径蛋白质降解维持胰岛素生物合成分泌
- 批准号:
10647830 - 财政年份:2016
- 资助金额:
$ 80.96万 - 项目类别:
Secretory Pathway Protein Degradation Maintains Insulin Biogenesis + Secretion
分泌途径蛋白质降解维持胰岛素生物合成分泌
- 批准号:
10430023 - 财政年份:2016
- 资助金额:
$ 80.96万 - 项目类别:
Modifiers of Proinsulin Influence T2D Susceptibility
胰岛素原调节剂影响 T2D 易感性
- 批准号:
9351508 - 财政年份:2016
- 资助金额:
$ 80.96万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 80.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




