Overcoming the Inhibitory Neurovascular Niche in Preterm Infant Brain Injury

克服早产儿脑损伤中的抑制性神经血管生态位

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Preterm infants are at risk for central nervous system (CNS) hemorrhage which can disrupt cerebellar maturation and lead to permanent neurodevelopmental impairment. The molecular signals in the disrupted neurovascular niche that block cerebellar development are not known. Thus, no therapeutics are available to prevent the developmental disabilities associated with preterm brain hemorrhage. Fibrinogen, a blood coagulation protein, crosses a leaky blood-brain barrier (BBB) and is a key driver of neuroinflammation, oxidative stress, neurodegeneration, glial scar formation, and inhibition of repair. We hypothesize that fibrinogen is a critical component of the neurovascular niche after BBB disruption that blocks cerebellar development in preterm infants. Our preliminary studies show: 1) Lipopolysaccharide (LPS)-induced systemic inflammation in neonatal mice increases vascular activation, fibrinogen deposition, and neuroinflammation in the cerebellum; 2) Fibrinogen depletion rescues cerebellar growth in systemic neonatal inflammation and plasma injection models of BBB disruption; 3) Fibrinogen inhibits neurogenesis from cerebellar granule neuronal progenitors (CGNPs) and is sufficient to disrupt cerebellar growth in vivo; 4) Fibrinogen activates the bone morphogenetic protein (BMP) receptor activin A receptor type I (ACVR1) in CNS progenitor cells to inhibit remyelination and neurogenesis; 5) Fibrin binds the CD11b/CD18 integrin receptor on microglia/macrophages to induce pro- inflammatory and pro-oxidant pathways that are toxic to CNS progenitor cells and impair regeneration; 6) fggγ390-396A knock-in mice, in which the binding site of fibrin to the CD11b integrin is mutated, have improved cerebellar growth during systemic neonatal inflammation. Our specific aims will test our working model, whereby fibrinogen deposition after BBB disruption alters cerebellar development through: 1) direct inhibitory effects on CGNPs via ACVR1 signaling, and 2) activation of innate immune responses via CD11b. In Aim 1, we will define the contribution of aberrant ACVR1 signaling to fibrinogen-induced cerebellar injury using CGNP-specific ACVR1 mutant mice and clinically relevant ACVR1 small molecule inhibitors. In Aim 2, we will determine the role of fibrin- CD11b-induced innate immune activation to cerebellar injury using fibrinogen mutant mice and a novel monoclonal antibody that blocks the interaction of fibrin with CD11b. In Aim 3, we will define how fibrinogen- ACVR1 signaling alters human cerebellar progenitor cell fate in induced pluripotent stem cell-derived cerebellar organoids using single cell transcriptomics. These studies will reveal molecular mechanisms at the neurovascular interface that link BBB disruption to CNS progenitor cell dysfunction in preterm infant brain injury. Thus, results from this proposal may open new treatment strategies to overcome the inhibitory neurovascular niche in preterm infant brain injury as well as other neurologic diseases with BBB disruption and fibrinogen deposition, such as multiple sclerosis, Alzheimer disease, and traumatic injury.
项目总结/摘要 早产儿有中枢神经系统(CNS)出血的风险,可破坏小脑的成熟 并导致永久性的神经发育障碍神经血管受损的分子信号 阻碍小脑发育的小生境尚不清楚。因此,没有可用的治疗剂来预防这种疾病。 与早产儿脑出血相关的发育障碍。纤维蛋白原,一种凝血蛋白, 穿过渗漏的血脑屏障(BBB),是神经炎症,氧化应激, 神经变性、神经胶质瘢痕形成和修复抑制。我们假设纤维蛋白原是 BBB破坏后的神经血管龛成分阻断早产儿小脑发育 婴儿。我们的初步研究表明:1)脂多糖(LPS)诱导的新生儿全身炎症反应 小鼠增加小脑中的血管活化、纤维蛋白原沉积和神经炎症; 2) 在全身性新生儿炎症和血浆注射模型中,纤维蛋白原耗竭可挽救小脑生长 纤维蛋白原抑制小脑颗粒神经元祖细胞(CGNP)的神经发生 并足以破坏体内小脑生长; 4)纤维蛋白原激活骨形态发生蛋白 (BMP)受体激活素A受体I型(ACVR 1)在CNS祖细胞中抑制髓鞘再生, 5)Fiorin结合小胶质细胞/巨噬细胞上的CD 11b/CD 18整联蛋白受体,以诱导促神经发生; 对CNS祖细胞有毒并损害再生的炎性和促氧化剂途径; 6) fggγ390- 396 A基因敲入小鼠,其中纤维蛋白与CD 11b整联蛋白的结合位点发生突变, 新生儿全身性炎症时小脑生长。我们的具体目标将检验我们的工作模式, 血脑屏障破坏后纤维蛋白原沉积通过以下方式改变小脑发育:1)直接抑制 CGNP通过ACVR 1信号传导,和2)通过CD 11b激活先天免疫应答。在目标1中,我们定义 利用CGNP特异性ACVR 1研究ACVR 1信号异常在纤维蛋白原诱导的小脑损伤中的作用 突变小鼠和临床相关ACVR 1小分子抑制剂。在目标2中,我们将确定纤维蛋白的作用- CD 11b诱导的先天性免疫激活对纤维蛋白原突变小鼠小脑损伤的影响 阻断纤维蛋白与CD 11b相互作用的单克隆抗体。在目标3中,我们将定义纤维蛋白原- ACVR 1信号转导改变人小脑祖细胞在诱导多能干细胞源性小脑分化中的命运 使用单细胞转录组学。这些研究将揭示分子机制, 早产儿脑损伤中BBB破坏与CNS祖细胞功能障碍相关神经血管界面。 因此,该建议的结果可能会开辟新的治疗策略,以克服抑制性神经血管 早产儿脑损伤以及其他伴有血脑屏障破坏和纤维蛋白原的神经系统疾病中的小生境 沉积,如多发性硬化症、阿尔茨海默病和创伤性损伤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARK A PETERSEN其他文献

MARK A PETERSEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARK A PETERSEN', 18)}}的其他基金

Fibrinogen-mediated mechanisms of preterm infant brain injury
纤维蛋白原介导的早产儿脑损伤机制
  • 批准号:
    10201774
  • 财政年份:
    2019
  • 资助金额:
    $ 47.91万
  • 项目类别:
Fibrinogen-mediated mechanisms of preterm infant brain injury
纤维蛋白原介导的早产儿脑损伤机制
  • 批准号:
    10450658
  • 财政年份:
    2019
  • 资助金额:
    $ 47.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了