An informatics framework for single-cell multi-omics from clinical specimens

临床标本单细胞多组学的信息学框架

基本信息

项目摘要

PROJECT SUMMARY Intra-tumor heterogeneity is a significant barrier to precision oncology. Emerging single-cell and spatial profiling approaches have enabled basic research into tumor heterogeneity. However, the application of these emerging approaches to the clinical decision process is limited. There is a critical need for predictive models that integrate these novel data with existing genomics approaches and histology, to generate actionable clinical recommendations. This proposal builds on my lab’s recent work, using single-cell RNA sequencing (scRNA-seq) to map the cellular hierarchies of complex tumors. Our preliminary data extend these studies to single-cell multi-omics, integrating single-cell assay for transposase-accessible chromatin (scATAC-seq) and spatial transcriptomics (ST). Our long-term goal is to develop models of malignant progression based on sequencing data from patient biopsies and deploy them to support clinical decisions. The overall objective of this project is to develop algorithms to integrate heterogeneous single-cell and imaging data to support therapy selection, trained on data from multiple cancers and broadly applicable pan-cancer. The rationale for this work is that these algorithms will be applied to pre-treatment biopsies to predict progression and to recommend appropriate therapy combinations. In Aim 1 we will develop and validate algorithms to model clonal composition, phylogeny, and evolutionary trajectory. This will be used to rigorously identify combinatorial chemotherapy targets and monitor emerging treatment-resistant clones. In Aim 2, we integrate scRNA-seq with ST as training data to develop a predictive model of gene expression and cellular composition, based on imaging data alone. We validate these algorithms internally, on prospective cohorts, and in situ in adjacent tissue. In Aim 3, we develop predictive models of two clinical problems that are challenging in many cancers: 1) the response to ionizing radiation, 2) the emergence of hypermutation at recurrence. Here, we exploit modern deep-and-wide learning approaches to identify genomic predictors of outcome that are tailored to a patient’s clinical context. We will validate this approach using both internal and external controls. Algorithms will be implemented in clinician dashboards in an existing system and the evaluation of clinical support will take place at two sites: the University of California, San Francisco and the University of Pittsburgh. We anticipate that this project will identify novel prognostic signatures, enable risk stratification, disease monitoring, and the selection of precision therapies. These studies will significantly advance our ability to apply single-cell and spatial profiling in the clinical setting.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Antonio Diaz其他文献

Aaron Antonio Diaz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Antonio Diaz', 18)}}的其他基金

An informatics framework for single-cell multi-omics from clinical specimens
临床标本单细胞多组学的信息学框架
  • 批准号:
    10522449
  • 财政年份:
    2022
  • 资助金额:
    $ 34.32万
  • 项目类别:
An informatics framework for single-cell multi-omics from clinical specimens
临床标本单细胞多组学的信息学框架
  • 批准号:
    10916710
  • 财政年份:
    2022
  • 资助金额:
    $ 34.32万
  • 项目类别:

相似海外基金

Dietary Selenium, Selenoenzyme Genes and Adult Glioma
膳食硒、硒酶基因和成人神经胶质瘤
  • 批准号:
    8627152
  • 财政年份:
    2013
  • 资助金额:
    $ 34.32万
  • 项目类别:
Dietary Selenium, Selenoenzyme Genes and Adult Glioma
膳食硒、硒酶基因和成人神经胶质瘤
  • 批准号:
    8509399
  • 财政年份:
    2013
  • 资助金额:
    $ 34.32万
  • 项目类别:
Methylmercury exposure, mercury metabolism genotypes, and risk of adult glioma
甲基汞暴露、汞代谢基因型和成人神经胶质瘤的风险
  • 批准号:
    8582978
  • 财政年份:
    2013
  • 资助金额:
    $ 34.32万
  • 项目类别:
Methylmercury exposure, mercury metabolism genotypes, and risk of adult glioma
甲基汞暴露、汞代谢基因型和成人神经胶质瘤的风险
  • 批准号:
    8693972
  • 财政年份:
    2013
  • 资助金额:
    $ 34.32万
  • 项目类别:
Genetic and Molecular Epidemiology of Adult Glioma
成人胶质瘤的遗传和分子流行病学
  • 批准号:
    7929941
  • 财政年份:
    2009
  • 资助金额:
    $ 34.32万
  • 项目类别:
Southeast Region Case-Control Study of Adult Glioma
东南地区成人胶质瘤病例对照研究
  • 批准号:
    7931272
  • 财政年份:
    2009
  • 资助金额:
    $ 34.32万
  • 项目类别:
Southeast Region Case-Control Study of Adult Glioma
东南地区成人胶质瘤病例对照研究
  • 批准号:
    8072107
  • 财政年份:
    2007
  • 资助金额:
    $ 34.32万
  • 项目类别:
Southeast Region Case-Control Study of Adult Glioma
东南地区成人胶质瘤病例对照研究
  • 批准号:
    7198202
  • 财政年份:
    2007
  • 资助金额:
    $ 34.32万
  • 项目类别:
Southeast Region Case-Control Study of Adult Glioma
东南地区成人胶质瘤病例对照研究
  • 批准号:
    7430442
  • 财政年份:
    2007
  • 资助金额:
    $ 34.32万
  • 项目类别:
The San Francisco Bay Area Adult Glioma Survival Study
旧金山湾区成人神经胶质瘤生存研究
  • 批准号:
    7253800
  • 财政年份:
    2007
  • 资助金额:
    $ 34.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了