Enabling the Assessment of Fetal Brain Development and Degeneration with Machine Learning
通过机器学习评估胎儿大脑发育和退化
基本信息
- 批准号:10659817
- 负责人:
- 金额:$ 44.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAnisotropyAwarenessBiological MarkersBrainCalibrationCompensationCongenital AbnormalityConsumptionCorpus CallosumCorticospinal TractsDataData AnalysesDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDiseaseEstimation TechniquesFetal DevelopmentFetal StructuresFetusFiberGenerationsGestational AgeGoalsHistologicHumanImageInferiorKnowledgeLabelLearningMRI ScansMachine LearningManualsMapsMeasurementMeasuresMethodologyMethodsMorphologic artifactsMotionNeonatalNeuritesNeurodevelopmental DisorderNoisePathway interactionsPopulation StudyPregnancyPremature InfantProcessReproducibilityResearchResolutionScanningShapesSignal TransductionStructureTechniquesTechnologyTestingTimeTrainingTraining TechnicsUncertaintyWorkanalysis pipelinebiophysical modelbrain abnormalitiesbrain basedcomputerized data processingcongenital heart disorderconvolutional neural networkdeep learningdensityexperimental studyfetalimprovedin uteromachine learning methodmathematical modelnetwork architectureneural network architecturenovelpostnatalspatiotemporaltoolwhite matter
项目摘要
Project Summary
Diffusion-weighted magnetic resonance imaging (dMRI) is the most promising tool for studying brain
microstructure. However, the application of dMRI to the assessment of fetal brain in-utero is challenged by
unpredictable motion, low signal-to-noise ratio, low spatial resolution, and imaging artifacts. While much effort
has been spent on improving image acquisition and motion compensation techniques, data processing and
analysis methods have remained largely unchanged. Existing biomarker estimation methods in fetal dMRI suffer
from low accuracy and low reproducibility. Moreover, cross-subject and population studies require delineation of
white matter (WM) tracts, which currently can only be performed via highly subjective and time-consuming
manual segmentation. These shortcomings have significantly limited our ability to study the brain at this critical
stage and to detect subtle changes in brain microstructure due to disorders. This proposed project will develop
and validate a new generation of methods for analysis of fetal dMRI data. Unlike existing methods, which are
based on biophysical models of the diffusion signal and mathematical model fitting, the new methods will rely on
data-driven and machine learning techniques. Building on our pioneering works that have shown the potential of
these methods, we will develop deep learning techniques for estimating microstructural biomarkers such as
fractional anisotropy, neurite orientation dispersion, and fiber orientation distribution. The new methods will be
based on two-stage transformer networks, which will be trained using dMRI data from preterm infants and
fetuses. Moreover, we will develop methods that work with undersampled scans and provide a calibrated
measure of estimation uncertainty. We will develop convolutional neural networks to segment WM tracts in the
fetal brain based on the local fiber orientations. To address the noise in the input and target labels, we will build
on our prior works on segmentation with noisy data and labels, shape-aware segmentation, and use of
uncertainty to improve segmentation accuracy. The new technique will generate tracts automatically, with tracts
that are indistinguishable from those created by the best human experts. We will evaluate the new methods
using test-retest and bootstrapping methods and via assessment by experts in fetal brain microstructure and
with histological knowledge of transient fetal fiber pathways. The new methods will enable assessment of fetal
brain microstructure and the impact of neurodevelopmental disorders on tract-specific microstructure with a level
of accuracy, detail, and reproducibility that is currently beyond reach. To definitively demonstrate the value and
significance of the new methods, we will use them to assess the alterations in WM micro-structure due to
congenital heart disease (CHD), which is the most common birth defect. In the process, we will produce the most
comprehensive and detailed picture of the impact of CHD on the fetal brain microstructure ever attempted.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Davood Karimi其他文献
Davood Karimi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Davood Karimi', 18)}}的其他基金
Accurate, reliable, and interpretable machine learning for assessment of neonatal and pediatric brain micro-structure
准确、可靠且可解释的机器学习,用于评估新生儿和儿童大脑微结构
- 批准号:
10566299 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 44.25万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 44.25万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 44.25万 - 项目类别:
Research Grant