Dissect Mechanism of Iron(II)/2-Oxoglutarate Dependent Enzymes Catalyzed Halogenation in Nucleotide Biosynthesis
核苷酸生物合成中铁(II)/2-氧化戊二酸依赖性酶催化卤化的解析机制
基本信息
- 批准号:10660003
- 负责人:
- 金额:$ 35.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:2&apos-deoxyadenosineAgrochemicalsAlkenesAlkynesAmino AcidsAnabolismAnionsAntineoplastic AgentsArchitectureAzidesBindingBiomedical EngineeringCarbonCarrier ProteinsChemicalsChloridesConsensusCopperDataElectronicsEnvironmentEnzyme KineticsEnzymesExhibitsFamilyFoundationsFutureGrantHalogensHomologous GeneHydrogenHydrogen BondingHydroxyl RadicalHydroxylationIronKnowledgeLeucineLibrariesMethodologyModernizationMononuclearMutagenesisNatural ProductsNucleosidesNucleotide BiosynthesisNucleotidesOutcomeOxidantsOxygenPathway interactionsPharmacologic SubstancePositioning AttributePropertyProteinsQuinolonesRaceReactionResearchScienceShapesSiteSubstrate InteractionTestingViralalpha ketoglutaratechemical synthesischlorinationcycloadditiondesigndrug discoveryelectronic structureenzyme mechanismenzyme substratefluorophoregeometric structurehalogenationinsightinterestmolecular dynamicsnovelscreeningspectroscopic surveysynthetic drug
项目摘要
Project Summary/Abstract
Iron and 2-oxoglutarate-dependent (Fe/2OG) enzymes, representing a superfamily of non-heme mononuclear
iron-containing (NHM-Fe) enzymes, have garnered strong research interests from fundamental enzyme
mechanism studies to bioengineering/biocatalysis explorations in recent years due to their exceedingly diverse
catalytic reactivities and simple enzyme architectures. Radical halogenation reactions via C-H bond activation
catalyzed by Fe/2OG halogenases are particularly attractive for chemical synthesis and biocatalysis applications,
since these enzymes can install carbon-halide bonds in a regio- and stereo-specific manner, a feat that has yet
to be achieved by organic synthetic methodology. As revealed by the mechanistic studies of carrier protein-
dependent Fe/2OG halogenases, the key step in the radical halogenation mechanism is the selective halide
radical transfer from the hydroxo-Fe(III)-halide intermediate to the substrate radical generated by the key reactive
species, the ferryl (Fe(IV)=O) intermediate. However, a consensus mechanism to explain the selective halide
transfer in Fe/2OG halogenases has not been reached, particularly the controlling factors to avoid hydroxyl
radical transfer to lead to hydroxylation reaction are not fully revealed. Additionally, the reasons why Fe/2OG
enzymes cannot perform fluorination reaction are completely unknown. In this project, we will bridge these
knowledge gaps by studying two newly discovered carrier protein-independent Fe/2OG halogenases that
catalyze chlorination reactions to generate halogenated nucleotide natural products and halogenated free-
standing amino acids. By using an integrative approach consisting of mechanistic probe design and synthesis,
enzyme product structural determination via LC-MS and NMR analysis, transient enzyme kinetics, advanced
spectroscopic characterization and molecular dynamics simulations, we will elucidate the influence of protein-
substrate interactions and dynamics in controlling efficient halogenation, explore the effect of different iron-bound
anions (e.g. Cl- vs. F-) to the electronic structure and the reactivity of the ferryl intermediate, test new chemical
strategies to enable fluorination in Fe/2OG enzymes, and expand the substrate scope of these enzymes for
potential synthetic applications. Given the importance of halogen-containing organic molecules in the modern
pharmaceutical and agrochemical applications, mechanistic elucidation of these newly discovered halogenases
will lay scientific foundation for future biocatalytic applications of these unique enzymes.
项目总结/摘要
铁和2-酮戊二酸依赖性(Fe/2 OG)酶,代表非血红素单核细胞超家族,
含铁(NHM-Fe)酶,已经从基础酶中获得了强烈的研究兴趣
近年来,由于生物工程/生物催化研究的多样性,
催化反应性和简单的酶结构。通过C-H键活化的自由基卤化反应
由Fe/2 OG催化的卤酶对于化学合成和生物催化应用特别有吸引力,
由于这些酶可以以区域和立体特异性的方式安装碳-卤键,
通过有机合成方法来实现。正如载体蛋白的机理研究所揭示的那样-
对于依赖于Fe/2 OG的卤化酶,自由基卤化机理的关键步骤是选择性卤化物
自由基从羟基-Fe(III)-卤化物中间体转移到由关键反应生成的底物自由基
物种,铁基(Fe(IV)=O)中间体。然而,解释选择性卤化物的共识机制
Fe/2 OG卤化酶中的转移尚未达到,特别是避免羟基的控制因素
导致羟基化反应的自由基转移没有完全揭示。此外,Fe/2 OG
酶不能进行酶促反应是完全未知的。在这个项目中,我们将把这些
通过研究两种新发现的不依赖于载体蛋白的Fe/2 OG卤化酶,
催化氯化反应生成卤代核苷酸天然产物和卤代游离-
固定氨基酸通过使用由机械探针设计和合成组成的综合方法,
通过LC-MS和NMR分析确定酶产物结构,瞬时酶动力学,高级
光谱表征和分子动力学模拟,我们将阐明蛋白质的影响,
底物相互作用和动力学在控制有效卤化,探讨不同的铁结合的效果
阴离子(例如Cl- vs. F-)对铁基中间体的电子结构和反应性的影响,测试新的化学品
策略,使铁/2 OG酶,并扩大这些酶的底物范围,
潜在的合成应用。考虑到含卤素有机分子在现代化学中的重要性,
医药和农业化学应用,这些新发现的卤代酶的机理阐明
将为这些独特酶的未来生物催化应用奠定科学基础。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling Valence Delocalization in Iron(III) Macrocyclic Complexes through Ring Unsaturation.
- DOI:10.1021/acs.inorgchem.3c01179
- 发表时间:2023-06
- 期刊:
- 影响因子:4.6
- 作者:Reese A. Clendening;Stephanie S Delancey;Andrew T Poore;Shan Xue;Yisong Guo;Shiliang Tian;T. Ren
- 通讯作者:Reese A. Clendening;Stephanie S Delancey;Andrew T Poore;Shan Xue;Yisong Guo;Shiliang Tian;T. Ren
Harnessing the Substrate Promiscuity of Dioxygenase AsqJ and Developing Efficient Chemoenzymatic Synthesis for Quinolones.
利用二氧酶ASQJ的底物滥交,并为喹诺酮类酮开发有效的化学酶合成。
- DOI:10.1021/acscatal.1c01150
- 发表时间:2021-06-18
- 期刊:
- 影响因子:12.9
- 作者:Tang, Haoyu;Tang, Yijie;Kurnikov, Igor, V;Liao, Hsuan-Jen;Chan, Nei-Li;Kurnikova, Maria G.;Guo, Yisong;Chang, Wei-chen
- 通讯作者:Chang, Wei-chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yisong Guo其他文献
Yisong Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yisong Guo', 18)}}的其他基金
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
- 批准号:
10458319 - 财政年份:2018
- 资助金额:
$ 35.51万 - 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
- 批准号:
10466811 - 财政年份:2018
- 资助金额:
$ 35.51万 - 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
- 批准号:
10197596 - 财政年份:2018
- 资助金额:
$ 35.51万 - 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
- 批准号:
9753300 - 财政年份:2018
- 资助金额:
$ 35.51万 - 项目类别:
Elucidate Mechanisms of Quinolone Alkaloid Biosynthesis via Iron(II)/2-Oxoglutarate Dependent Enzymes: Diverse, but Controlled Reactivity
通过铁 (II)/2-氧戊二酸依赖性酶阐明喹诺酮生物碱生物合成的机制:多样但受控的反应性
- 批准号:
10675986 - 财政年份:2018
- 资助金额:
$ 35.51万 - 项目类别:
相似海外基金
Neurotoxicity of deoxyadenosine and neuroprotective effects of adenosine deaminase
脱氧腺苷的神经毒性和腺苷脱氨酶的神经保护作用
- 批准号:
16K08923 - 财政年份:2016
- 资助金额:
$ 35.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification and characterization of methyl-deoxyadenosine in the eukaryotic genome.
真核基因组中甲基脱氧腺苷的鉴定和表征。
- 批准号:
BB/M022994/1 - 财政年份:2015
- 资助金额:
$ 35.51万 - 项目类别:
Research Grant
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178061 - 财政年份:1986
- 资助金额:
$ 35.51万 - 项目类别:
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178065 - 财政年份:1986
- 资助金额:
$ 35.51万 - 项目类别:
MECHANISM OF CYTOTOXICITY OF DEOXYADENOSINE AND ANALOGS
脱氧腺苷及其类似物的细胞毒性机制
- 批准号:
3178066 - 财政年份:1986
- 资助金额:
$ 35.51万 - 项目类别:
MOLECULAR CLONING OF BACTERIAL DEOXYCYTIDINE/DEOXYADENOSINE KINASE
细菌脱氧胞苷/脱氧腺苷激酶的分子克隆
- 批准号:
3935271 - 财政年份:
- 资助金额:
$ 35.51万 - 项目类别:
MOLECULAR CLONING OF BACTERIAL DEOXYCYTIDINE/DEOXYADENOSINE KINASE
细菌脱氧胞苷/脱氧腺苷激酶的分子克隆
- 批准号:
3914170 - 财政年份:
- 资助金额:
$ 35.51万 - 项目类别: