Engagement and Communication Between Proteasomal Subcomplexes

蛋白酶体亚复合物之间的参与和通讯

基本信息

  • 批准号:
    10659372
  • 负责人:
  • 金额:
    $ 30.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary Abstract The 26S proteasome conducts most regulated protein degradation and eliminates toxic proteins from cells. The proteasome is a validated anti-cancer target, and holds substantial promise as a target for treatment of neurodegenerative disorders and some infectious diseases. Our long-term goal is to understand how the three major complexes of the proteasome—the lid, base, and core particle—engage and communicate within and between one another. We have thus far made significant progress toward this goal and have developed a number of novel tools and reagents that have furthered our understanding of intra- and inter-complex communication. Conceptual advances have included: i) discovery of additional conformational states of the yeast proteasome relevant to substrate catalysis; ii) demonstration that six highly similar ATP-hydrolyzing subunits differentially influence the activation state of the proteasome; iii) discovery of a link between the conformational state of the proteasome and release of a dedicated proteasome assembly chaperone; and iv) and the finding that proteasomal subcomplexes disengage one another prior to their destruction by autophagy. A paradigm emerging from this initial budget period is that rather small binding events or molecular movements are transmitted, often over long distances, to enact largescale conformational changes. Understanding how such local events are amplified and transmitted to distant areas of the proteasome to coordinate assembly and catalysis is thus a critical knowledge gap. In this first renewal, we propose three Aims that explore examples of this paradigm newly discovered by us during the initial budget period. Together, they will push our knowledge of proteasome dynamics and inter-complex communication into new arenas. In the first, we will use newly developed FRET-based kinetic assays to decipher how local changes to the lid-base interface regulate the timely binding and release of dedicated assembly chaperones from nascent proteasomes. In the second, we will explore a surprising allosteric conduit originating from the substrate unfolding center of the proteasome that regulates the stability between two key subcomplexes. In the third Aim, we will investigate an unusual eukaryotic proteasome from a poorly studied human parasite from the phylum of Microsporidia. Microsporidia lack several proteasome subunits that normally span a key inter-complex interface. The missing subunits contain several small sequence elements with essential roles in assembly and catalysis in other eukaryotes, so exploring these unusual proteasomes will thus reveal both conserved and unique elements of inter-complex communication. These studies are anticipated to produce important insights into the engagement and communication between the proteasomal subcomplexes, significantly advancing several aspects of proteasome biology and drug discovery. Further, microsporidia are NIH priority pathogens of interest for which no broadly effective treatments exist. Insights into microsporidial proteasomes thus may reveal new targets to combat certain parasitic infections.
项目摘要 26S蛋白酶体进行大多数调节的蛋白质降解,并从细胞中消除有毒蛋白质。的 蛋白酶体是一种经过验证的抗癌靶点,并且作为治疗癌症的靶点具有巨大的前景 神经退行性疾病和一些传染病。我们的长期目标是了解这三个 蛋白酶体的主要复合物--盖、基和核心颗粒--在内部接合和交流, 彼此之间。迄今为止,我们在实现这一目标方面取得了重大进展,并制定了一些 新的工具和试剂,这些工具和试剂进一步加深了我们对复合体内部和复合体之间通信的理解。 概念上的进展包括:i)发现了酵母蛋白酶体的其他构象状态 与底物催化有关; ii)证明六个高度相似的ATP水解亚基差异 影响蛋白酶体的活化状态; iii)发现蛋白酶体的构象状态与蛋白酶体的构象状态之间的联系。 蛋白酶体和释放专用的蛋白酶体组装分子伴侣;以及iv)并且发现, 蛋白酶体亚复合体在被自噬破坏之前彼此分离。 从这个初始预算期出现的一个范例是,相当小的结合事件或分子运动 通常是通过长距离传播,以产生大规模的构象变化。了解如何这样 局部事件被放大并传递到蛋白酶体的远处区域以协调组装, 因此,催化是一个关键的知识空白。在第一次更新中,我们提出了三个目标,探索 这是我们在最初预算期间新发现的范例。他们将一起推动我们对 蛋白酶体动力学和复合体间通讯进入新的领域。首先,我们将使用新的 开发了基于FRET的动力学分析,以破译盖子-基底界面的局部变化如何及时调节 从新生蛋白酶体中结合和释放专用的装配分子伴侣。第二,我们将 探索一个令人惊讶的变构管道起源于底物展开中心的蛋白酶体, 调节两个关键亚复合物之间的稳定性。在第三个目标中,我们将研究一种不寻常的真核生物, 蛋白酶体来自一种研究较少的人类寄生虫,来自微孢子虫门。微孢子虫缺乏几个 蛋白酶体亚单位,通常跨越一个关键的复合体间的界面。缺失的子单元包含几个 小序列元件在其他真核生物中的组装和催化中具有重要作用,因此探索这些 因此,不寻常的蛋白酶体将揭示复合体间通讯的保守和独特元件。 这些研究预计将产生重要的见解之间的参与和沟通, 蛋白酶体亚复合物,显著推进了蛋白酶体生物学和药物的几个方面 的发现此外,微孢子虫是NIH优先关注的病原体, 存在.因此,对微孢子虫蛋白酶体的深入了解可能会揭示对抗某些寄生虫感染的新靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROBERT JOSEPH TOMKO其他文献

ROBERT JOSEPH TOMKO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROBERT JOSEPH TOMKO', 18)}}的其他基金

Engagement and Communication Between Proteasonal Subcomplexes
蛋白酶子复合物之间的参与和交流
  • 批准号:
    9892109
  • 财政年份:
    2017
  • 资助金额:
    $ 30.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了